【摘要】第1章向量與矩陣矩陣?yán)碚撌蔷€性代數(shù)中最重要的一個(gè)部分,向量與矩陣是數(shù)學(xué)中重要且應(yīng)用廣泛的工具。本章介紹向量及相關(guān)知識(shí)、介紹矩陣及其相關(guān)的概念。研究矩陣的運(yùn)算,著重討論方陣的運(yùn)算,方陣的逆矩陣。第1章目錄?第節(jié)向量基本知識(shí)?第節(jié)矩陣及其運(yùn)算?第節(jié)n階
2024-12-01 16:30
【摘要】NumericalAnalysisJ.G.LiuSchoolofMath.&Phys.NorthChinaEle
2024-12-06 00:59
【摘要】數(shù)組運(yùn)算和矩陣運(yùn)算從外觀形狀和數(shù)據(jù)結(jié)構(gòu)來看,,矩陣作為一種變換或映射算符的體現(xiàn),,其目的是為了數(shù)據(jù)管理方面,操作簡(jiǎn)單,,在使用MATLAB時(shí),.數(shù)組運(yùn)算和矩陣運(yùn)算指令形式和實(shí)質(zhì)內(nèi)涵數(shù)組運(yùn)算矩陣運(yùn)算指令含義指令含義A.'非共軛轉(zhuǎn)置
2024-09-14 18:29
【摘要】第三節(jié)向量的乘法?一、向量的數(shù)量積?二、向量的向量積?三、向量的混合積?四、小結(jié)、思考題一物體在常力F?作用下沿直線從點(diǎn)1M移動(dòng)到點(diǎn)2M,以s?表示位移,則力F?所作的功為?cos||||sFW???(其中?為F?與s?的夾角)實(shí)例
2024-12-03 21:11
【摘要】第一節(jié)矩陣的特征值與特征向量第五章介紹性實(shí)例——?jiǎng)恿ο到y(tǒng)與斑點(diǎn)貓頭鷹-2-1990年,在利用或?yàn)E用太平洋西北部大面積森林問題上,北方的斑點(diǎn)貓頭鷹稱為一個(gè)爭(zhēng)論的焦點(diǎn)。如果采伐原始森林的行為得不到制止的話,貓頭鷹將瀕臨滅絕的危險(xiǎn)。數(shù)學(xué)生態(tài)學(xué)家加快了對(duì)
2025-02-20 03:29
【摘要】?,3,2,1?k第7章矩陣特征值問題2112122122212122221222212nnnnnwwwwwwwwwwHwwwww??????????????????nTnTWRWwwwWH
2024-12-03 21:19
【摘要】第三章矩陣和向量的應(yīng)用向量空間一、向量空間及其子空間:設(shè)V是n維向量的非空集合,如果V對(duì)于向量加法及數(shù)乘兩種運(yùn)算封閉,即:VkVRkV????????????,,,,則稱集合V為n維向量空間,簡(jiǎn)稱為向量空間。例如:??RaaaaaaR???32,132,13,),(?
2024-12-14 12:53
【摘要】《線性代數(shù)》下頁結(jié)束返回第二章矩陣§1矩陣的概念§2矩陣的線性運(yùn)算、乘法和轉(zhuǎn)置運(yùn)算下頁《線性代數(shù)》下頁結(jié)束返回第二章矩陣本章要求1.掌握矩陣的運(yùn)算,了解方陣的冪、方陣乘積的行列式;2.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)及
2025-07-18 00:58
【摘要】第二節(jié)向量組的秩Ch4向量空間定理1性質(zhì)1:性質(zhì)3:性質(zhì)2:定理4:定義1最大線性無關(guān)向量組最大無關(guān)組一、最大(線性)無關(guān)向量組一、最大(線性)無關(guān)向量組秩定理1二、矩陣與向量組秩的關(guān)系二、矩陣與向量組秩的關(guān)系結(jié)論:說明:定理4:最大無關(guān)組B為行最簡(jiǎn)形矩陣定理2
2025-03-08 09:24
【摘要】《線性代數(shù)》下頁結(jié)束返回一、矩陣的秩的概念二、初等變換求矩陣的秩三、向量組方面的一些重要方法下頁第7節(jié)矩陣的秩及向量組的極大無關(guān)組求法①向量組的秩的計(jì)算方法②極大無關(guān)組的確定方法③用極大無關(guān)組表示其它向量的方法注意:第6-7節(jié)與教材內(nèi)容及次序有所不同,請(qǐng)作筆記.《線性代數(shù)》下頁
2024-12-05 18:11
【摘要】1§逆矩陣2,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);
2024-12-06 00:34
【摘要】作用初等變換終止矩陣結(jié)果秩階梯陣r(A)=非0行數(shù)行變換極大無關(guān)組(基)階梯陣主列對(duì)應(yīng)原矩陣的列行變換行最簡(jiǎn)形非主列的線性表示關(guān)系解Ax=b(AX=B)(Ab)行變換階梯陣判別解:r1r2無解r1=r2=n唯一解,r1=r2n無窮
2025-03-08 09:15
【摘要】矩陣的特征值與特征向量邵陽學(xué)院畢業(yè)設(shè)計(jì)(論文)矩陣的特征值與特征向量摘要 本文介紹了矩陣的特征值與特征向量的一些基本性質(zhì)及定理,通過分析基本性質(zhì)和定理來得出它們的基本求解方法,并延伸到一些特殊求解法。接下來還介紹了一類特殊矩陣——實(shí)對(duì)稱矩陣的特征值與特征向量,這讓讀者對(duì)矩陣的特征值與特征向量有更進(jìn)一步
2025-08-14 21:50
【摘要】矩陣方程AX+XB=D的極小范數(shù)最小二乘解摘要矩陣?yán)碚摷仁菍W(xué)習(xí)經(jīng)典數(shù)學(xué)的基礎(chǔ),又是一門最有實(shí)用價(jià)值的數(shù)學(xué)理論。它不僅是數(shù)學(xué)的一個(gè)重要的分支,而且也已經(jīng)成為現(xiàn)代各科技領(lǐng)域處理大量有限維空間形式與數(shù)量關(guān)系的強(qiáng)有力的工具。特別是計(jì)算機(jī)的廣泛應(yīng)用,為矩陣論的應(yīng)用開辟了廣闊的前景。例如,系統(tǒng)工程、優(yōu)化方法以及穩(wěn)定性理論等,都與矩陣論有著密切的聯(lián)系。當(dāng)前,在矩陣?yán)碚擃I(lǐng)域,對(duì)矩陣
2025-08-12 14:14
【摘要】矩陣的特征值與特征向量邵陽學(xué)院畢業(yè)設(shè)計(jì)(論文)I矩陣的特征值與特征向量摘要本文介紹了矩陣的特征值與特征向量的一些基本性質(zhì)及定理,通過分析基本性質(zhì)和定理來得出它們的基本求解方法,并延伸到一些特殊求解法。接下來還介紹了一類特殊矩陣——實(shí)對(duì)稱矩陣的特征值與特征向量,這
2024-10-29 09:48