【摘要】00,1,0,,0???????第二節(jié)洛必達(dá)法則一洛必達(dá)法則二其他未定式洛必達(dá)法則型未定式解法型及一、:??00.)x(F)x(flim,)x(F)x(f,)x(ax)x(ax型未定式或稱為那末極限大都趨于零或都趨于無窮與兩個函數(shù)時或如果當(dāng)????????00例如
2024-09-11 16:52
【摘要】第一節(jié)導(dǎo)數(shù)的概念一、導(dǎo)數(shù)概念的引出1.變速直線運(yùn)動的速度設(shè)描述質(zhì)點(diǎn)運(yùn)動位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時刻的瞬時速度為00)()(lim0tttstsvtt????221tg
2025-07-10 05:05
【摘要】1第六節(jié)反常積分第七節(jié)定積分的幾何應(yīng)用返回一、無窮限的反常積分二、無界函數(shù)的反常積分第六節(jié)反常積分三、函數(shù)?復(fù)習(xí)1、首先考慮2、其次考慮3、再次考慮換元法直接積分法湊微分法或分部法.dxxfba?
2025-01-25 09:20
【摘要】第五節(jié)隱函數(shù)及參數(shù)方程確定函數(shù)的導(dǎo)數(shù)一隱函數(shù)求導(dǎo)法二對數(shù)求導(dǎo)法三參數(shù)方程確定函數(shù)的導(dǎo)數(shù)四小結(jié):.稱為隱函數(shù)所確定的函數(shù)由二元方程)(),(xyyyxF?形式稱為顯函數(shù).)(xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?如何求導(dǎo)?
2024-09-02 17:58
【摘要】1高階導(dǎo)數(shù)第三節(jié)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例三、小結(jié)及作業(yè)2一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動的加速度.),(tss?設(shè)).()(tstv??則瞬時速度為的變化率,對時間是速度因為加速度tva定義.)())((,)()(lim))((,)()(處的二階導(dǎo)數(shù)在點(diǎn)為則稱存在即處可
2025-06-24 12:10
【摘要】一、問題的提出二、導(dǎo)數(shù)的定義四、函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導(dǎo)數(shù)的幾何意義第一節(jié)導(dǎo)數(shù)概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運(yùn)動--自由落體運(yùn)動,如圖,,0tt的時刻取一鄰近于,?運(yùn)動時間ts???v平均速度
2024-11-02 12:41
【摘要】二、二階導(dǎo)數(shù)的應(yīng)用函數(shù)極值的判定[定理]如果函數(shù)f(x)在x0附近有連續(xù)的二階導(dǎo)數(shù)f"(x),且f'(x0)=0,f"(x)≠0,那么⑴若f"(x0)<0,則函數(shù)f(x)在點(diǎn)x0處取得極大值⑵若f"(x0)>0,則函數(shù)f(x)在點(diǎn)x0處取得極小值
2025-07-17 21:46
【摘要】1導(dǎo)數(shù)的概念第三章導(dǎo)數(shù)與微分求導(dǎo)法則基本導(dǎo)數(shù)公式與高階導(dǎo)數(shù)函數(shù)的微分導(dǎo)數(shù)在經(jīng)濟(jì)學(xué)中的簡單應(yīng)用22.高階導(dǎo)數(shù)基本導(dǎo)數(shù)公式與高階導(dǎo)數(shù)1.基本導(dǎo)數(shù)公式2/5/20223(1).()C??0(2).()x?
2025-02-25 13:30
【摘要】中值定理洛必達(dá)法則函數(shù)的單調(diào)性與極值函數(shù)圖形的描繪導(dǎo)數(shù)在經(jīng)濟(jì)中的應(yīng)用結(jié)束第3章中值定理、導(dǎo)數(shù)應(yīng)用前頁結(jié)束后頁定理1設(shè)函數(shù)滿足下列條件)(xf)()(bfaf?(3)(1)在閉區(qū)間
2025-04-10 10:32
【摘要】習(xí)題四A1用積分公式直接求下列不定積分。(1)cxxxdxxxxdxxxxx???????????????22123233421829)49(149(2)cxxdxxxdxxxx?????????21252123252)()1((3)cxxdxxxdxxxx???????????arc
2025-02-26 08:39
【摘要】2021/11/101復(fù)習(xí):P96—111預(yù)習(xí):P113—121P112習(xí)題4(2)(4).5(4).7.8(3).9(2).10.作業(yè)2021/11/102第十講極值與凸性一、極值與最值二、函數(shù)的凸性三、曲線的漸近線四、函數(shù)作圖2021/11/10
2024-12-03 21:17
【摘要】定積分的計算定積分的概念和性質(zhì)換元積分法分部積分法基本公式微積分定積分的應(yīng)用求平面圖形的面積主要內(nèi)容求旋轉(zhuǎn)體的體積廣義積分無窮區(qū)間上的廣義積分無界函數(shù)的廣義積分1一、定積分概念和性質(zhì)任取在區(qū)間上的定積分,(簡稱積分)即此時稱f(x)在[a,b]上可積.記作2積分上限積分下限
2025-03-08 09:52
【摘要】1-1
2025-02-26 08:40
【摘要】習(xí)題1—1解答1.設(shè),求解;2.設(shè),證明:3.求下列函數(shù)的定義域,并畫出定義域的圖形:(1)(2)(3)(4)yx11-1-1O解(1)yx11-1-1O(2)yx-a-bcOzab
2024-07-31 03:33
【摘要】1§3-3Cauchy積分公式和高階導(dǎo)數(shù)公式一、解析函數(shù)的Cauchy積分公式二、解析函數(shù)的高階導(dǎo)數(shù)定理三Δ、解析函數(shù)的實部和虛部與調(diào)和函數(shù)2.,0中一點(diǎn)為為一單連通區(qū)域設(shè)DzD,d)(0??Czzzzf一般不為零所以.)(,)(00不解析在那
2025-06-13 08:35