freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題訓練經(jīng)典題目(及答案)(7)-在線瀏覽

2025-04-05 05:52本頁面
  

【正文】 CE+∠DBC=45176。由勾股定理得DD′==4,∠D′DA+∠ADC=90176。∴該矩形的面積為=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案為B.【點睛】本題考查了勾股定理的證明以及運用和一元二次方程的運用,求出小正方形的邊長是解題的關鍵.4.A解析:A【解析】分析:將△BPC繞點B逆時針旋轉(zhuǎn)60176。則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60176。即可得到∠APB的度數(shù),在直角△APF中利用三角函數(shù)求得AF和PF的長,則在直角△ABF中利用勾股定理求得AB的長,進而求得三角形ABC的面積.詳解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點B逆時針旋轉(zhuǎn)60176?!唷鰾PE為等邊三角形,∴PE=PB=4,∠BPE=60176。∴∠APB=90176。=150176?!嘣谥苯恰鰽PF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.則△ABC的面積是?AB2=?(25+12)=9+.故選A.點睛:本題考查了等邊三角形的判定與性質(zhì)、勾股定理的逆定理以及旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應點到旋轉(zhuǎn)中心的距離相等.5.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對稱圖形,點B與點D是關于直線AC為對稱軸的對稱點,∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點P,∵點 N為AC上的動點,由三角形兩邊和大于第三邊,知當點N運動到點P時,BN+MN=BP+PM=BM,BN+MN的最小值為BM的長度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90176。從而證明△BOE是直角三角形,然后設AB=x,則OB=3+x,根據(jù)周長最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【詳解】解:作點A關于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C, 此時△ABC周長最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周長的最小值是6,∴AB+BE=6,∵∠MON=45176。由作圖可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45176?!唷鰾OE是直角三角形,設AB=x,則OB=3+x,BE=6-x,在Rt△OBE中,解得:x=1,∴AB=1.故選D.【點睛】本題考查了利用軸對稱求最值,等腰直角三角形的判定與性質(zhì),勾股定理,熟練掌握作圖技巧,正確利用勾股定理建立出方程是解題的關鍵.8.D解析:D【分析】根據(jù)已知利用等腰三角形的性質(zhì)及三角形外角的性質(zhì),找出圖中存在的規(guī)律,求出鋼條的根數(shù),然后根據(jù)最后一根鋼條與射線AB的焊接點P到A點的距離即AP5為4+2,設AP1=a,作P2D⊥AB于點D,再用含a的式子表示出P1P3,P3P5,從而可求出a的值,即得出每根鋼條的長度,從而可以求得所有鋼條的總長.【詳解】解:如圖,∵AP1與各鋼條的長度相等,∴∠A=∠P1P2A=15176?!唷螾1P3P2=30176?!唷螾3P4P2=45176。∴∠P3P5P4=60176?!唷螾4P6P5=75176。此時就不能再往上焊接了,綜上所述總共可焊上5根鋼條.設AP1=a,作P2D⊥AB于點D,∵∠P2P1D=30176。P3P4=P4P5,∴△P4P3P5是等邊三角形,∴P3P5=a,∵最后一根鋼條與射線AB的焊接點P到A點的距離為4+2,∴AP5=a+a+a=4+2,解得,a=2,∴所有鋼條的總長為25=10,故選:D.【點睛】本題考查了三角形的內(nèi)角和、等腰三角形的性質(zhì)、三角形外角的性質(zhì)、等邊三角形的判定與性質(zhì)以及勾股定理等知識,發(fā)現(xiàn)并利用規(guī)律找出鋼條的根數(shù)是解答本題的關鍵.9.B解析:B【分析】過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45176。然后根據(jù)勾股定理即可得到結論.【詳解】解:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最?。逥C=2,BD=6,∴BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45176?!郆C′⊥BC,∠BCC′=∠BC′C=45176。∴CD2+DF2=FC2,∴CD2+22=62,∴CD=.故選:A.【點睛】本題考查了作圖基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關鍵.11.C解析:C【分析】根據(jù)BD、CE分別是AC、AB邊上的高,推導出;再結合題意,可證明,由此可得,;再經(jīng)得,從而證明AF⊥AQ;最后由勾股定理得,從而得到,即可得到答案.【詳解】如圖,CE和BD相較于H∵BD、CE分別是AC、AB邊上的高∴, ∴ ∴ ∵ ∴ 又∵BQ=AC且CF=AB∴ ∴,,故B、D結論正確;∵ ∴ ∴∴AF⊥AQ故A結論正確;∵∴ ∵ ∴ ∴ 故選:C.【點睛】本題考查了全等三角形、直角三角形、勾股定理、三角形的高等知識;解題的關鍵是熟練掌握全等三角形、直角三角形、勾股定理、三角形的高的性質(zhì),從而完成求解.12.B解析:B【解析】根據(jù)題意,如圖,∠AOB=3017
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1