freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題訓(xùn)練經(jīng)典題目(及答案)50(2)-在線瀏覽

2025-04-01 22:15本頁面
  

【正文】 m2,SB=55=25cm2,Sc=55=25cm2,又∵ ,∴36+25+25+SD=100,∴SD =14,∴正方形D的邊長為cm.故選:B.【點(diǎn)睛】本題考查了勾股定理,熟悉勾股定理的幾何意義是解題的關(guān)鍵.5.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn),的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中, ,∴,∴從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲爬行的最短路程的平方為.故選D.【點(diǎn)睛】本題考查了平面展開最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.6.D解析:D【解析】【分析】先利用勾股定理計(jì)算BC的長度,然后陰影部分的面積=以AB為直徑的半圓面積+以BC為直徑的半圓面積+以AC為直徑的半圓面積.【詳解】解:在中∵,,∴,∴BC=3, ∴陰影部分的面積=以AB為直徑的半圓面積+以BC為直徑的半圓面積+以AC為直徑的半圓面積=.【點(diǎn)睛】.7.B解析:B【分析】設(shè)OA=a,OB=b,OC=c,OD=d,根據(jù)勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可證得a2+d2=18,由此得到答案.【詳解】設(shè)OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,則a2+b2+c2+b2+c2+d2=50,∴a2+d2+2(b2+c2)=50,∴a2+d2=50﹣162=18,∴AD=,故選:B.【點(diǎn)睛】此題考查勾股定理的運(yùn)用,根據(jù)題中的已知條件得到直角三角形,再利用勾股定理求出未知的邊長,解題中注意直角邊與斜邊.8.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進(jìn)而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=+=,在Rt△ABC中,∵∠ABC=90176。2,∵AB>0,∴AB=2米,∴小巷的寬度為:+2=(米).故選:D.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.9.D解析:D【分析】先根據(jù)等腰三角形的性質(zhì)得出是線段垂直平分線,再根據(jù)垂直平分線的性質(zhì)、兩點(diǎn)之間線段最短得出最小值為,最后根據(jù)垂線段最短、直角三角形的性質(zhì)得出BE的最小值即可得.【詳解】如圖,作,交AC于點(diǎn)E,∵AD平分∠BAC,∴∠BAD=∠CAD,是線段垂直平分線(等腰三角形的三線合一)由兩點(diǎn)之間線段最短得:當(dāng)點(diǎn)共線時(shí),最小,最小值為點(diǎn)都是動(dòng)點(diǎn)隨點(diǎn)的運(yùn)動(dòng)而變化由垂線段最短得:當(dāng)時(shí),取得最小值在中,即的最小值為故選:D.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)、垂直平分線的性質(zhì)、兩點(diǎn)之間線段最短等知識(shí)點(diǎn),利用兩點(diǎn)之間線段最短和垂線段最短確認(rèn)的最小值是解題關(guān)鍵.10.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出AF=FC.再根據(jù)ASA證明△FOA≌△BOC,那么AF=BC=3,等量代換得到FC=AF=3,利用線段的和差關(guān)系求出FD=ADAF=1.然后在直角△FDC中利用勾股定理求出CD的長.【詳解】解:如圖,連接FC,∵點(diǎn)O是AC的中點(diǎn),由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA與△BOC中, ,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,F(xiàn)D=ADAF=86=2.在△FDC中,∵∠D=90176?!唷螦BD+∠CBE=90176?!唷螧AD=∠CBE,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根據(jù)勾股定理,得BC=,在Rt△ABC中,根據(jù)勾股定理,得AC=.故選A.考點(diǎn):;;.21.B解析:B【分析】根據(jù)直角三角形的意義和性質(zhì)可以得到解答.【詳解】解:由題意,∴,②正確;∵∠DBC=45176?!郆E=DE∴,∴BH=CD=AB,③正確;∵,∴AB⊥CD,∴即 ,⑤正確,∵沒有依據(jù)支持①④成立,∴②③⑤正確故選B .【點(diǎn)睛】本題考查直角三角形的意義和性質(zhì),靈活應(yīng)用有關(guān)知識(shí)求解是解題關(guān)鍵.22.B解析:B【分析】將正方體的左側(cè)面與前面展開,構(gòu)成一個(gè)長方形,用勾股定理求出距離即可.【詳解】解:如圖,AB=.故選:B.【點(diǎn)睛】此題求最短路徑,我們將平面展開,組成一個(gè)直角三角形,利用勾股定理求出斜邊就可以了.23.A解析:A【分
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1