freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)專題題庫∶二次函數(shù)的綜合題附詳細(xì)答案-在線瀏覽

2025-03-30 22:25本頁面
  

【正文】 ∵拋物線的對稱軸:直線x=1,∴設(shè)F(1,m),直線BC的解析式:y=﹣x+2;∴D(0,2)∵B(2,0),∴BD=,①當(dāng)BF=BD時(shí),m=177?!郌坐標(biāo)(1,2+)或(1,2﹣)③當(dāng)BF=DF時(shí),m=1,F(xiàn)(1,1),此時(shí)B、D、F在同一直線上,不符合題意.綜上,符合條件的點(diǎn)F的坐標(biāo)(1,)或(1,﹣)或(1,2+)或(1,2﹣).【點(diǎn)睛】考查了二次函數(shù),熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.7.已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個動點(diǎn).(1)求拋物線的解析式;(2)當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),△PAB的面積有最大值?(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.【答案】(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時(shí),△PAB的面積有最大值;(3)點(diǎn)P(4,6).【解析】【分析】(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45176。知若△PDE為等腰直角三角形,則∠EDP=45176?!郉H∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45176。若△PDE為等腰直角三角形,則∠EDP=45176。3,∵k<0,∴k=﹣3;(3)如圖2,設(shè)拋物線L1的解析式為y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),設(shè)P(0,t),(a)當(dāng)△PCD∽△FOP時(shí),∴,∴t2﹣(1+m)t+2=0①;(b)當(dāng)△PCD∽△POF時(shí),∴,∴t=(m+1)②;(Ⅰ)當(dāng)方程①有兩個相等實(shí)數(shù)根時(shí),△=(1+m)2﹣8=0,解得:m=2﹣1(負(fù)值舍去),此時(shí)方程①有兩個相等實(shí)數(shù)根t1=t2=,方程②有一個實(shí)數(shù)根t=,∴m=2﹣1,此時(shí)點(diǎn)P的坐標(biāo)為(0,)和(0,);(Ⅱ)當(dāng)方程①有兩個不相等的實(shí)數(shù)根時(shí),把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(負(fù)值舍去),此時(shí),方程①有兩個不相等的實(shí)數(shù)根t1=t2=2,方程②有一個實(shí)數(shù)根t=1,∴m=2,此時(shí)點(diǎn)P的坐標(biāo)為(0,1)和(0,2);綜上,當(dāng)m=2﹣1時(shí),點(diǎn)P的坐標(biāo)為(0,)和(0,);當(dāng)m=2時(shí),點(diǎn)P的坐標(biāo)為(0,1)和(0,2).【點(diǎn)睛】本題主要考查二次函數(shù)的應(yīng)用,涉及到待定系數(shù)法求函數(shù)解析式、割補(bǔ)法求三角形的面積、相似三角形的判定與性質(zhì)等,(2)小題中根據(jù)三角形BMN的面積求得點(diǎn)N與點(diǎn)M的橫坐標(biāo)之差是解題的關(guān)鍵;(3)小題中運(yùn)用分類討論思想進(jìn)行求解是關(guān)鍵.9.如圖1,在平面直角坐標(biāo)系中,直線與拋物線交于兩點(diǎn),其中,.該拋物線與軸交于點(diǎn),與軸交于另一點(diǎn).(1)求的值及該拋物線的解析式。若不存在,請說明理由.【答案】(1);(2)當(dāng),即時(shí),最大,此時(shí),所以;(3)存在點(diǎn)坐標(biāo)為或.【解析】分析:(1)把A與B坐標(biāo)代入一次函數(shù)解析式求出m與n的值,確定出A與B坐標(biāo),代入二次函數(shù)解析式求出b與c的值即可; (2)由等腰直角△APM和等腰直角△DPN,得到∠MPN為直角,由兩直角邊乘積的一半表示出三角形MPN面積,利用二次函數(shù)性質(zhì)確定出三角形面積最大時(shí)P的坐標(biāo)即可; (3)存在,分兩種情況,根據(jù)相似得比例,求出AQ的長,利用兩點(diǎn)間的距離公式求出Q坐標(biāo)即可.詳解:(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3,∴A(1,0),B(4,3). ∵y=﹣x2+bx+c經(jīng)過點(diǎn)A與點(diǎn)B,∴,解得:,則二次函數(shù)解析式為y=﹣x2+6x﹣5; (2)如圖2,△APM與△DPN都為等腰直角三角形,∴∠APM=∠DPN=45176?!唷鱉PN為直角三角形,令﹣x2+6x﹣5=0,得到x=1或x=5,∴D(5,0),即DP=5﹣1=4,設(shè)AP=m,則有DP=4﹣m,∴PM=m,PN=(4﹣m),∴S△MPN=PM?PN=m(4﹣m)=﹣m2﹣m=﹣(m﹣2)2+1,∴當(dāng)m=2,即AP=2時(shí),S△MPN最大,此時(shí)OP=3,即P(3,0); (3)存在,易得直線CD解析式為y=x﹣5,設(shè)Q(x,x﹣5),由題意得:∠BAD=∠ADC=45176。(3)這種商品的銷售單價(jià)定為65元時(shí),月利潤最大,最大月利潤是3675.【解析】【分析】(1)當(dāng)40≤x≤60時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,當(dāng)60<x≤90時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=mx+n,解方程組即可得到結(jié)論;(2)當(dāng)40≤x≤60時(shí),當(dāng)60<x≤90時(shí),根據(jù)題意即可得到函數(shù)解析式;(3)當(dāng)40≤x≤60時(shí),W=x2+210x5400,得到當(dāng)x=60時(shí),W最大=602+210605400=3600,當(dāng)60<x≤90時(shí),W=3x2+390x9000,得到當(dāng)x=65時(shí),W最大=3652+390659000=3675,于是得到結(jié)論.【詳解】解:(1)當(dāng)40≤x≤60時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,將(40,140),(60,120)代入得,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣x+180;當(dāng)60<x≤90時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=mx+n,將(90,30),(60,120)代入得,解得:,∴y=﹣3x+300;綜上所述,y=;(2)當(dāng)40≤x≤60時(shí),W=(x﹣30)y=(x﹣30)(﹣x+180)=﹣x2+210x﹣5400,當(dāng)60<x≤90時(shí),W=(x﹣30)(﹣3x+300)=﹣3x2+390x﹣9000,綜上所述,W=;(3)當(dāng)40≤x≤60時(shí),W=﹣x2+210x﹣5400,∵﹣1<0,對稱軸x==105,∴當(dāng)40≤x≤60時(shí),W隨x的增大而增大,∴當(dāng)x=60時(shí),W最大=﹣602+21060﹣5400=3600,當(dāng)60<x≤90時(shí),W=﹣3x2+390x﹣9000,∵﹣3<0,對稱軸x==65,∵60<x≤90,∴當(dāng)x=65時(shí),W最大=﹣3652+39065﹣9000=3675,∵3675>3600,∴當(dāng)x=65時(shí),W最大=3675,答:這種商品的銷售單價(jià)定為65元時(shí),月利潤最大,最大月利潤是3675.【點(diǎn)睛】本題考查了把實(shí)際問題轉(zhuǎn)化為二次函數(shù),再利用二次函數(shù)的性質(zhì)進(jìn)行實(shí)際應(yīng)用.根據(jù)題意分情況建立二次函數(shù)的模型是解題的關(guān)鍵.11.如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.(1)求出拋物線C1的解析式,并寫出點(diǎn)G的坐標(biāo);(2)如圖2,將拋物線C1向下平移k(k>0)個單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)△A′B′G′是等邊三角形時(shí),求k的值:(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動點(diǎn),過點(diǎn)M作x軸的垂線分別交拋物線CC2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1