freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx全國(guó)各地備戰(zhàn)中考模擬試卷數(shù)學(xué)分類:二次函數(shù)綜合題匯編含答案解析-在線瀏覽

2025-03-30 22:23本頁(yè)面
  

【正文】 n2+3n,∵EF∥MN,ME∥NF,∴四邊形MNFE是平行四邊形,∴ME=NF,∴﹣m2+3m=﹣n2+3n,∴m+n=4,∴MG=n﹣m=4﹣2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=,∵B(4,0),C(0,﹣3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=(n﹣m)=(4﹣2m)=5﹣m,∴ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,∵﹣<0,∴當(dāng)m=時(shí),ME+MN有最大值,∴M(,﹣)【點(diǎn)睛】本題考查二次函數(shù)圖象及性質(zhì),一次函數(shù)圖象及性質(zhì);熟練掌握待定系數(shù)法求函數(shù)解析式的方法,結(jié)合三角形的性質(zhì)解題.8.如圖1,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C.(1)求拋物線的解析式;(2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,問在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)在(1)中拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?。咳舸嬖?,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(4)如圖2,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).【答案】(1)y=﹣x2﹣2x+3;(2)存在符合條件的點(diǎn)P,其坐標(biāo)為P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)存在,Q(﹣1,2);(4), .【解析】【分析】(1)已知拋物線過A、B兩點(diǎn),可將兩點(diǎn)的坐標(biāo)代入拋物線的解析式中,用待定系數(shù)法即可求出二次函數(shù)的解析式;(2)可根據(jù)(1)的函數(shù)解析式得出拋物線的對(duì)稱軸,也就得出了M點(diǎn)的坐標(biāo),由于C是拋物線與y軸的交點(diǎn),因此C的坐標(biāo)為(0,3),根據(jù)M、C的坐標(biāo)可求出CM的距離.然后分三種情況進(jìn)行討論:①當(dāng)CP=PM時(shí),P位于CM的垂直平分線上.求P點(diǎn)坐標(biāo)關(guān)鍵是求P的縱坐標(biāo),過P作PQ⊥y軸于Q,如果設(shè)PM=CP=x,那么直角三角形CPQ中CP=x,OM的長(zhǎng),可根據(jù)M的坐標(biāo)得出,CQ=3﹣x,因此可根據(jù)勾股定理求出x的值,P點(diǎn)的橫坐標(biāo)與M的橫坐標(biāo)相同,縱坐標(biāo)為x,由此可得出P的坐標(biāo).②當(dāng)CM=MP時(shí),根據(jù)CM的長(zhǎng)即可求出P的縱坐標(biāo),也就得出了P的坐標(biāo)(要注意分上下兩點(diǎn)).③當(dāng)CM=CP時(shí),因?yàn)镃的坐標(biāo)為(0,3),那么直線y=3必垂直平分PM,因此P的縱坐標(biāo)是6,由此可得出P的坐標(biāo);(3)根據(jù)軸對(duì)稱﹣?zhàn)疃搪窂絾栴}解答;(4)由于四邊形BOCE不是規(guī)則的四邊形,因此可將四邊形BOCE分割成規(guī)則的圖形進(jìn)行計(jì)算,過E作EF⊥x軸于F,S四邊形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,F(xiàn)O為E的橫坐標(biāo)的絕對(duì)值,EF為E的縱坐標(biāo),已知C的縱坐標(biāo),就知道了OC的長(zhǎng).在△BFE中,BF=BO﹣OF,因此可用E的橫坐標(biāo)表示出BF的長(zhǎng).如果根據(jù)拋物線設(shè)出E的坐標(biāo),然后代入上面的線段中,即可得出關(guān)于四邊形BOCE的面積與E的橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求得四邊形BOCE的最大值及對(duì)應(yīng)的E的橫坐標(biāo)的值.即可求出此時(shí)E的坐標(biāo).【詳解】(1)∵拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),∴,解得:.∴所求拋物線解析式為:y=﹣x2﹣2x+3;(2)如答圖1,∵拋物線解析式為:y=﹣x2﹣2x+3,∴其對(duì)稱軸為x==﹣1,∴設(shè)P點(diǎn)坐標(biāo)為(﹣1,a),當(dāng)x=0時(shí),y=3,∴C(0,3),M(﹣1,0)∴當(dāng)CP=PM時(shí),(﹣1)2+(3﹣a)2=a2,解得a=,∴P點(diǎn)坐標(biāo)為:P1(﹣1,);∴當(dāng)CM=PM時(shí),(﹣1)2+32=a2,解得a=177。(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。時(shí),△DAQ1∽△DOB,∴,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如圖,當(dāng)∠Q2BA=90176。時(shí),作AE⊥y軸于E,則△BOQ3∽△Q3EA,∴,即∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).綜上,Q點(diǎn)坐標(biāo)為(0,)或(0,)或(0,﹣1)或(0,﹣3).11.如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣1,0)和點(diǎn)C(0,4),交x軸正半軸于點(diǎn)B,連接AC,點(diǎn)E是線段OB上一動(dòng)點(diǎn)(不與點(diǎn)O,B重合),以O(shè)E為邊在x軸上方作正方形OEFG,連接FB,將線段FB繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90176?!螰PN+∠PFN=90176。FP=FB,∴△PNF≌△BEF(AAS),∴FN=FE=a,PN=EB=4﹣a,∴點(diǎn)P(2a,4),點(diǎn)H(2a,﹣4a2+6a+4),∵PH=2,即:﹣4a2+6a+4﹣4=|2|,解得:a=1或或或(舍去),故:點(diǎn)P的坐標(biāo)為(2,4)或(1,4)或(,4).【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,其中(2)、(3),要注意分類求解,避免遺漏.12.已知:二次函數(shù)(a為常數(shù)).(1)請(qǐng)寫出該二次函數(shù)圖象的三條性質(zhì);(2)在同一直角坐標(biāo)系中,若該二次函數(shù)的圖象在的部分與一次函數(shù)的圖象有兩個(gè)交點(diǎn),求的取值范圍.【答案】(1)見解析;(2).【解析】【分析】(1)可從開口方向、對(duì)稱軸、最值等角度來(lái)研究即可;(2) 先由二次函數(shù)的圖象與一次函數(shù)的圖象有兩個(gè)交點(diǎn),即關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,由此可得,再根據(jù)二次函數(shù)的圖象在的部分與一次函數(shù)的圖象有兩個(gè)交點(diǎn),也就是說(shuō)二次函數(shù)的圖象與軸的部分有兩個(gè)交點(diǎn),畫出函數(shù)的圖象,結(jié)合圖象,可知當(dāng)時(shí),將x=4代入求得a的取值范圍,由此即可求得答案.【詳解】(1)①圖象開口向上;②圖象的對(duì)稱軸為直線;③當(dāng)時(shí),隨的增大而增大;④當(dāng)時(shí),隨的增大而減小;⑤當(dāng)時(shí),函數(shù)有最小值;(2)∵二次函數(shù)的圖象與一次函數(shù)的圖象有兩個(gè)交點(diǎn),∴,即,解得,∵二次函數(shù)的圖象在的部分與一次函數(shù)的圖象有兩個(gè)交點(diǎn),∴二次函數(shù)的圖象與軸的部分有兩個(gè)交點(diǎn),畫出二次函數(shù)的圖象,結(jié)合圖象,可知當(dāng)時(shí),∴當(dāng)時(shí),得,∴當(dāng)二次函數(shù)的圖象在的部分與一次函數(shù)的圖象有兩個(gè)交點(diǎn)時(shí),的取值范圍為.【點(diǎn)睛】本題考查的是二次函數(shù)綜合題,涉及了二次函數(shù)的性質(zhì),二次函數(shù)圖象與一次函數(shù)圖象的交點(diǎn)問題,二次函數(shù)的圖象與x軸交點(diǎn)問題,正確進(jìn)行分析并運(yùn)用數(shù)形結(jié)合思想、靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.13.如圖,已知直線與拋物線: 相交于和點(diǎn)兩點(diǎn).⑴求拋物線的函數(shù)表達(dá)式;⑵若點(diǎn)是位于直線上方拋物線上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);⑶在拋物線的對(duì)稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】⑴;⑵當(dāng) ,□MANB=△= ,此時(shí);⑶存在. 當(dāng)時(shí),無(wú)論取任何實(shí)數(shù),均有. 理由見解析.【解析】【分析】(1)利用待定系數(shù)法,將A,B的坐標(biāo)代入y=ax2+2x+c即可求得二次函數(shù)的解析式;(2)過點(diǎn)M作MH⊥x軸于H,交直線AB于K,求出直線AB的解析式,設(shè)點(diǎn)M(a,a2+2a+3),則K(a,a+1),利用函數(shù)思想求出MK的最大值,再求出△AMB面積的最大值,可推出此時(shí)平行四邊形MANB的面積S及點(diǎn)M的坐標(biāo);(3)如圖2,分別過點(diǎn)B,C作直線y=的垂線,垂足為N,H,設(shè)拋物線對(duì)稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,其中F(1,a),連接BF,CF,則可根據(jù)BF=BN,CF=CN兩組等量關(guān)系列出關(guān)于a的方程組,解方程組即可.【詳解】(1)由題意把點(diǎn)(1,0)、(2,3)代入y=ax2+2x+c,得,解
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1