freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

函數(shù)的單調(diào)性教學(xué)設(shè)計(jì)5篇-展示頁(yè)

2024-11-09 17:04本頁(yè)面
  

【正文】 ,培養(yǎng)學(xué)生研究數(shù)學(xué)的能力,學(xué)會(huì)歸納總結(jié)。同時(shí)說(shuō)明數(shù)學(xué)題型間的轉(zhuǎn)化關(guān)系,使學(xué)生體驗(yàn)數(shù)學(xué)中的藝術(shù)美。調(diào)動(dòng)學(xué)生參與討論,形成生動(dòng)活潑的學(xué)習(xí)氛圍,從而培養(yǎng)學(xué)生的發(fā)散思維,開(kāi)闊解題思路,使學(xué)生形成良好的學(xué)習(xí)習(xí)慣)。本節(jié)課是高中數(shù)學(xué)新課程標(biāo)準(zhǔn)必修1的第2章函數(shù)里的函數(shù)基本性質(zhì)中介紹的第一個(gè)性質(zhì)。對(duì)整個(gè)高中數(shù)學(xué)教學(xué)起著重要的奠基作用。下面我就這部分內(nèi)容的習(xí)題教學(xué)提出一些不成熟的做法。(2)在能力方面,培養(yǎng)學(xué)生歸納、抽象以及推理的能力,提高學(xué)生創(chuàng)新的意識(shí),并滲透數(shù)形結(jié)合的思想。教學(xué)重點(diǎn)和難點(diǎn):本節(jié)課的教學(xué)重點(diǎn)是函數(shù)單調(diào)性的判定、證明及應(yīng)用。教法和學(xué)法:在教法上采用傳統(tǒng)的講練結(jié)合。而學(xué)生在學(xué)習(xí)過(guò)程中不僅要訓(xùn)練知識(shí)技能,還要達(dá)到思維的訓(xùn)練,因此這節(jié)課要以學(xué)生為主體,給學(xué)生充足的活動(dòng)空間。教學(xué)過(guò)程設(shè)計(jì):大概分為復(fù)習(xí)回顧、例題講解、規(guī)律小結(jié)、鞏固練習(xí)四個(gè)版塊,最后布置作業(yè)。復(fù)習(xí)分為概念回顧和基礎(chǔ)練習(xí)兩部分,預(yù)計(jì)費(fèi)時(shí)7到8分鐘左右,其中概念為(1)函數(shù)單調(diào)性和單調(diào)區(qū)間的定義以及用定義證明函數(shù)單調(diào)性的步驟,(2)怎么判斷函數(shù)單調(diào)性及單調(diào)區(qū)間——可以用定義法,也可以從圖象上觀(guān)察?;A(chǔ)練習(xí)部分選擇了5道小題目,課件形式給出,請(qǐng)學(xué)生口答,內(nèi)容涉及單調(diào)性的理解,一次函數(shù)、二次函數(shù)的單調(diào)性,最后一題讓學(xué)生們畫(huà)出圖象,觀(guān)察圖象的“升降”寫(xiě)出單調(diào)區(qū)間,滲透數(shù)形結(jié)合的思想,都是小題目,難度小,用時(shí)少,但緊扣概念,也讓學(xué)生迅速熱身,無(wú)形中抓住了學(xué)生的課堂注意力。x21選擇這個(gè)題目是為了讓學(xué)生更好地掌握定義法證明函數(shù)單調(diào)性的方法和基本步驟,變式的選擇是為培養(yǎng)學(xué)生分情況討論的意識(shí)和能力,講解過(guò)程中要注意證明的規(guī)范性,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的科學(xué)態(tài)度和品質(zhì)。x+2函數(shù)單調(diào)性的一個(gè)很重要的應(yīng)用是求函數(shù)的值域或最值,選擇這道題,教會(huì)學(xué)生利用單調(diào)性來(lái)求函數(shù)值域的方法。豐富學(xué)生的知識(shí)體系。)上的增函數(shù),且f()=f(x)f(y)xy(1)求f(1)的值(2)若f(3)=1,解不等式f(x+5)2這是一道抽象函數(shù)的題目,對(duì)于求出f(1)、f(9)分別是0和2用的是賦值法,這是抽象函數(shù)中常用的方法,不等式變?yōu)閒(x+5)f(9),應(yīng)用函數(shù)單調(diào)性,將抽象函數(shù)函數(shù)值的大小關(guān)系,轉(zhuǎn)化為自變量之間的大小關(guān)系,即237。x+59,提醒學(xué)生注意函數(shù)定義域!238。關(guān)于例已知f(x)是R上的減函數(shù),g(x)=x2+4x,求函數(shù)h(x)=f(g(x))的單調(diào)增區(qū)間。)上遞減,又f(x)也遞減,所以[2,+165。本題小結(jié):兩個(gè)函數(shù)單調(diào)性相同則復(fù)合后是增,相反則復(fù)合后是減。關(guān)于鞏固練習(xí)題目方面的選擇:這部分選兩題,類(lèi)型在例題中已出現(xiàn),其中第一個(gè)要先證明函數(shù)的單調(diào)性,再求值域。這部分讓學(xué)生自己做,用投影儀和板書(shū)結(jié)合,規(guī)范其書(shū)寫(xiě)和論證。一共有三大題,第一題是求單調(diào)區(qū)間,其中要用圖形,數(shù)形結(jié)合;第二題要利用例4的小結(jié)“兩個(gè)函數(shù)單調(diào)性相同則復(fù)合后是增,相反則復(fù)合后是減。以上是我對(duì)這部分習(xí)題教學(xué)方面的一些思考,希望得到專(zhuān)家的指正!第三篇:函數(shù)單調(diào)性函數(shù)單調(diào)性概念教學(xué)的三個(gè)關(guān)鍵點(diǎn) ──兼談《函數(shù)單調(diào)性》的教學(xué)設(shè)計(jì)北京教育學(xué)院宣武分院 彭 林函數(shù)單調(diào)性是學(xué)生進(jìn)入高中后較早接觸到的一個(gè)完全形式化的抽象定義,對(duì)于仍然處于經(jīng)驗(yàn)型邏輯思維發(fā)展階段的高一學(xué)生來(lái)講,有較大的學(xué)習(xí)難度。最近,在我區(qū)“青年教師評(píng)優(yōu)課”上,聽(tīng)了多名教師對(duì)這節(jié)課不同風(fēng)格的課堂教學(xué),通過(guò)對(duì)他們教學(xué)案例的研究和思考,筆者認(rèn)為,在函數(shù)單調(diào)性概念的教學(xué)中,關(guān)鍵是把握住如下三個(gè)關(guān)鍵點(diǎn)。學(xué)生 學(xué)習(xí)函數(shù)單調(diào)性的認(rèn)知基礎(chǔ)是什么?在這個(gè)內(nèi)容之前,已經(jīng)教學(xué)過(guò)一次函數(shù)、二次函數(shù)、反比例函數(shù)等簡(jiǎn)單函數(shù),函數(shù)的變量定義和映射定義,以及函數(shù)的表示。接踵而來(lái)的任務(wù)是對(duì)函數(shù)應(yīng)該繼續(xù)研究什么。對(duì)各種函數(shù)模型而言,就是研究它們所描述的運(yùn)動(dòng)關(guān)系的變化規(guī)律,也就是這些運(yùn)動(dòng)關(guān)系在變化之中的共同屬性或不變屬性,即“變中不變”的性質(zhì)。至于在多種函數(shù)性質(zhì)中,選擇這個(gè)時(shí)機(jī)來(lái)討論函數(shù)的單調(diào)性而不是其他性質(zhì),是因?yàn)楹瘮?shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個(gè)性質(zhì)。第二階段,形象描述階段(初中階段),能用抽象的語(yǔ)言描述一個(gè)量隨另一個(gè)量變化的趨勢(shì),如“y隨著x的增大而減少”。第四階段,認(rèn)識(shí)提升階段(高中選修系列2),要求學(xué)生能初步認(rèn)識(shí)導(dǎo)數(shù)與單調(diào)性的聯(lián)系。讓學(xué)生分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀(guān)察自變量變化時(shí),函在學(xué)生畫(huà)圖的基礎(chǔ)上,引導(dǎo)學(xué)生觀(guān)察圖象,獲得信息:第一個(gè)圖象從左向右逐漸上升,y隨x的增大而增大;第二個(gè)圖象從左向右逐漸下降,對(duì)于自變量變化時(shí),函數(shù)值具有這兩種變化規(guī)律的函數(shù),通過(guò)討論使學(xué)生明確函數(shù)的單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的.在此基礎(chǔ)上,教師引導(dǎo)學(xué)生用自己的語(yǔ)言描述增函數(shù)的定義: 如果函數(shù)在某個(gè)區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y也越來(lái)越大,我們說(shuō)函數(shù)在該區(qū)間上為增函數(shù).關(guān)鍵點(diǎn)2。學(xué)生在初中已經(jīng)接觸過(guò)一次函數(shù)、反比例函數(shù)、二次函數(shù),對(duì)函數(shù)的增減性已有初步的認(rèn)識(shí):隨x增大y增大是增函數(shù),隨x增大y 減小是減函數(shù)。其實(shí),數(shù)學(xué)概念就是一系列常識(shí)不斷精微化的結(jié)果,之所以要進(jìn)一步形式化,完全是數(shù)學(xué)精確性、嚴(yán)密性的要求,因?yàn)橹挥羞_(dá)到這種符號(hào)化、形式化的程度,才可以進(jìn)行準(zhǔn)確的計(jì)算,進(jìn)行推理論證。恰當(dāng)運(yùn)用圖形語(yǔ)言、自然語(yǔ)言和符號(hào)化的形式語(yǔ)言,并進(jìn)行三者之間必要的轉(zhuǎn)化,可以說(shuō),這是學(xué)習(xí)數(shù)學(xué)的基本思考方式。長(zhǎng)此以往,便可使學(xué)生在學(xué)習(xí)知識(shí)的同時(shí),學(xué)到比知識(shí)更重要的東西—學(xué)會(huì)如何思考?如何進(jìn)行數(shù)學(xué)的思考?一般說(shuō),對(duì)函數(shù)單調(diào)性的建構(gòu)有兩個(gè)重要過(guò)程,一是建構(gòu)函數(shù)單調(diào)性的意義,二是通過(guò)思維構(gòu)造把這個(gè)意義用數(shù)學(xué)的形式化語(yǔ)言加以描述。后一過(guò)程的進(jìn)行則有相當(dāng)?shù)碾y度,其難就難在用數(shù)學(xué)的符合語(yǔ)言來(lái)描述函數(shù)單調(diào)性的定義時(shí),如何才能最大限度地通過(guò)學(xué)生自己的思維活動(dòng)來(lái)完成。(2)“‘隨著’x增大,函數(shù)f(x)‘也’增大”,如何用符號(hào)表示。在初中數(shù)學(xué)中,除了學(xué)習(xí)函數(shù)的初級(jí)概念,用y=f(x)表示函數(shù)y隨著自變量x的變化而變化時(shí),接觸到一點(diǎn)動(dòng)態(tài)數(shù)學(xué)對(duì)象的數(shù)學(xué)符號(hào)表示以外,絕大多數(shù)都是用數(shù)學(xué)符號(hào)表示靜態(tài)的數(shù)學(xué)對(duì)象。在教學(xué)中,教師可以組織學(xué)生先分組探究,然后全班交流,相互補(bǔ)充,并及時(shí)對(duì)學(xué)生的發(fā)言進(jìn)行反饋、評(píng)價(jià),對(duì)普遍出現(xiàn)的問(wèn)題組織學(xué)生討論,學(xué)生錯(cuò)誤的回答主要有兩種:①在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)楹瘮?shù). ,所以在上為增②可以用0,1,2,3,4,5驗(yàn)證: 在所以函數(shù)上是增函數(shù)。例如,指出回答②試圖用自然數(shù)列來(lái)驗(yàn)證結(jié)論,而且引入了不等式表示不等關(guān)系,但是,只是對(duì)有限幾個(gè)自然數(shù)驗(yàn)證不行,只有當(dāng)所有的比較結(jié)果都是一樣的:自變量大時(shí),函數(shù)值也大,才可以證明它是增函數(shù),那么怎么辦?如果有的學(xué)生提出:引入非負(fù)實(shí)數(shù)a,只要證明就可以了,這就把驗(yàn)證的范圍由有限擴(kuò)大到了無(wú)限。也就是,從給定的區(qū)間內(nèi)任意取兩個(gè)自變量,然后求差比較函數(shù)值的大小,從而得到正確的回答: 任意取在,有為增函數(shù). ,即,所以這種回答既揭示了單調(diào)性的本質(zhì),也讓學(xué)生領(lǐng)悟到兩點(diǎn):(1)兩自變量的取值具有任意性;(2)求差比較它們函數(shù)值的大小。教學(xué)中,教師引導(dǎo)學(xué)生用嚴(yán)格的數(shù)學(xué)符號(hào)語(yǔ)言歸納、抽象增函數(shù)的定義,,:判斷題:①②若函數(shù)③若函數(shù)滿(mǎn)足f(2)和(2,3)上均為增函數(shù),則函數(shù)在(1,3)上為增函數(shù).④,所以在上是通過(guò)對(duì)判斷題的討論,強(qiáng)調(diào)三點(diǎn):①單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,離開(kāi)了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②有的函數(shù)在整個(gè)定義域內(nèi)單調(diào)(如一次函數(shù)),有的函數(shù)只在定義域內(nèi)的某些區(qū)間單調(diào)(如二次函數(shù)),有的函數(shù)根本沒(méi)有單調(diào)區(qū)間(如常函數(shù)).③函數(shù)在定義域內(nèi)的兩個(gè)區(qū)間A,B上都是增(或減)函數(shù),一般不能認(rèn)為函數(shù)在上是增(或減)函數(shù).從而加深學(xué)生對(duì)定義的理解北京4中常規(guī)備課【教學(xué)目標(biāo)】1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.2.通過(guò)對(duì)函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀(guān)察、歸納、抽象的能力和語(yǔ)言表達(dá)能力;通過(guò)對(duì)函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.3.通過(guò)知識(shí)的探究過(guò)程培養(yǎng)學(xué)生細(xì)心觀(guān)察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣,讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過(guò)程.【教學(xué)重點(diǎn)】 函數(shù)單調(diào)性的概念、判斷及證明.【教學(xué)難點(diǎn)】 歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性. 【教學(xué)方法】 教師啟發(fā)講授,學(xué)生探究學(xué)習(xí). 【教學(xué)手段】 計(jì)算機(jī)、投影儀. 【教學(xué)過(guò)程】一、創(chuàng)設(shè)情境,引入課題 課前布置任務(wù):(1)由于某種原因,2008年北京奧運(yùn)會(huì)開(kāi)幕式時(shí)間由原定的7月25日推遲到8月8日,請(qǐng)查閱資料說(shuō)明做出這個(gè)決定的主要原因.(2),可以了解到開(kāi)幕式推遲主要是天氣的原
點(diǎn)擊復(fù)制文檔內(nèi)容
職業(yè)教育相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1