freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

完全平方公式教學設計[5篇范文]-展示頁

2024-11-04 22:29本頁面
  

【正文】 通過乘法公式的學習對簡化某些整式的運算、培養(yǎng)學生的求簡意識有較大好處。b)= a 177。b)= a 177。173。三、教學活動(一)復習引入:用一個多項式的每一項乘以另一個多項式的每一項,(a+b)(m+n)=am+an+bm+bn(二)探究發(fā)現、提出問題,學生自學問題:根據乘方的定義,我們知道:a2=a?a,那么(a+b)2 應該寫成什么樣的形式呢?(a+b)2的運算結果有什么規(guī)律?計算下列各式,你能發(fā)現什么規(guī)律?(1)(p+1)2 =(p+1)(p+1)= _______;(m+2)2 = _______;(2)(p?1)2 =(p?1)(p?1)= _______;(m?2)2 = _______; 學生討論,教師歸納,得出結果:(1)(p+1)2 =(p+1)(p+1)= p2+2p+1(m+2)2 =(m+2)(m+2)= m2+ 4m+4(2)(p?1)2 =(p?1)(p?1)= p2?2p+1(m?2)2 =(m?2)(m?2)= m2? 4m+4分析推廣:結果中有兩個數的平方和,而2p=2?p?1,4m=2?m?2,恰好是兩個數乘積的二倍(1)(2)之間只差一個符號.推廣:計算(a+b)2 = __________;(a?b)2 = ,分析公式結論:(a+b)2=a2+2ab+b2(a?b)2=a2?2ab+b2即:兩數和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.(三)例題講解例1.應用完全平方公式計算:1(1)(4m+n)2(2)(y?2)2 解答:(1)(4m+n)2 = 16m2+8mn+n2 11(2)(y?2)2 = y2?y+4例2.運用完全平方公式計算:(1)1022(2)992解答:(1)1022 =(100+2)2 = 10000+400+4 = 10404(2)992 =(100?1)2 = 10000?200+1 = 9801(四)智能大闖關第一關:判斷(元芳你怎么看?)練習下面各式的計算是否正確?如果不正確,應當怎樣改正?(1)(x+y)2=x2+y2(2)(xy)2=x2y2(3)(xy)2=x2+2xy+y2(4)(x+y)2=x2+xy+y2:巧奪百寶箱(搶答)練習1 計算:(1)(a+5)(2)(y7)2(3)(3+x)2(4)(2y)2練習2計算、(1)(3t3)2(2)(2x+3y)2(3)(2x+3y)2(4)(x2+3y)2:動腦又動手 思考22(a+b)(ab)(1)與相等嗎? 22(ab)(ba)(2)與相等嗎? 22(3)(ab)與ab相等嗎?為什么? 22(3a2b)(4)你能用幾種方法運用完全平方公式計算::能力提升x+y=4,則x2 + 2xy + y2的值是()A、8B、16C、2D、4(ab)2+M=a2 + 2ab + b2,則M為()A、abB、0C、2abD、4ab若使x26x + m成為形如(xa)2的完全平方形式,則m,a的值已知a+b=5,ab=6求:a2+3ab+b2的值(四)歸納小結 談談本節(jié)課你的收獲(a+b)2=a2+2ab+b2,(ab)2= a22ab +:首平方,尾平方,積的2倍放中央,中間符號同前方。情感目標在靈活應用公式的過程中激發(fā)學生學習數學的興趣,培養(yǎng)創(chuàng)新能力和探索精神。第一篇:完全平方公式教學設計完全平方公式教學設計一、教學目標: 知識目標:; ; 能力目標經歷探索完全平方公式的工程,進一步發(fā)展符號感和推理能力。重視學生對算理的理解,有意識培養(yǎng)學生的思維條理性和表達能力。二、教學重點與難點:重點:完全平方公式的推導過程、結構特點、幾何解釋,靈活應用難點:理解完全平方公式的結構特征,并能靈活運用公式進行計算。(五)布置作業(yè) 作業(yè)必做題:教材112頁第7題 選做題:教材112頁9題第二篇:完全平方公式 教學設計 完全平方公式 教學設計20212022學年人教版八年級數學上冊【課標內容】通過本課的學習不斷啟迪學生思考,發(fā)展學生的思維能力,讓學生經歷探索新知、鞏固新知和拓展新知這一過程,發(fā)揮學生的主體作用,增強學生學數學、讓學生在公式的運用中積累解題的經驗,體會成功的喜悅.【教材分析】本節(jié)課的教學內容是完全平方公式,既是多項式乘法的延伸,又是一種特殊形式的多項式的乘法,它在后繼學習中如:公式法分解因式、配方法等具有支撐作用,是一種被廣泛應用的公式,教材通過創(chuàng)設“計算實驗田面積”的問題,引導學生利用不同的計算方法得出完全平方公式,同時也給出了完全平方公式的幾何背景,通過設計“想一想”,對得出的公式利用已經學過的多項式乘法法則進行驗證,進而得出(ab)2=a22ab+b2,然后將(a+b)2=a2+2ab+b2與(ab)2=a22ab+b2統(tǒng)稱為“完全平方公式”.通過設計例題和隨堂練習實現學生能運用公式進行簡單計算的目的,通過設計“讀一讀”介紹“楊輝三角”使學生了解我國古代數學的輝煌成就,并引導學生發(fā)現新的規(guī)律,為學生產生思維的飛躍提供了平臺.【學情分析】學生已熟練掌握了冪的運算和整式乘法,但在進行多項式乘法運算時常常會確定錯某些項符號及漏項等問題.學生學習完全公式的困難在于對公式的結構特征以及公式中字母的廣泛含義學生的理解.因此,教學中引導學生分析公式的結構特征,并運用變式訓練揭示公式的本質特征,以加深學生對公式的理解.【教學目標】:學生通過推導完全平方公式,了解公式的幾何背景;理解并掌握公式的結構特征,并能進行簡單計算;:學生在探索完全平方公式的過程中,體會數形結合,進一步發(fā)展符號感和推理能力;:通過聯系生活實際的學習,體會到公式的應用價值,在獨立思考的基礎上,積極參與對數學問題的討論,敢于發(fā)表自己的觀點,形成良好的學習態(tài)度.【教學重點】完全平方公式的結構特征及公式直接應用.【教學難點】對公式中字母a、b的廣泛含義的理解與正確應用.【教學方法】五步教學法 引導發(fā)現法、類比法、啟發(fā)探究 講練結合【課前準備】學案 多媒體課件【課時設置】一課時【教學過程】數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,為有序、有效地進行教學,切實突出學生主體地位,:一、預學自檢 互助點撥(閱讀課本P 109~ 110頁,思考下列問題),能發(fā)現什么規(guī)律?(1)(p+1)2=(p+1)(p+1)=___________ (2)(m+2)2=________(3)(p-1)2=(p-1)(p-1)=___________(4)(m-2)2=______________ 再計算: 2.歸納公式:文字敘述: 文字敘述: 公式中的a、b可以代表 3.思考:看課本P109思考圖::老師引導學生觀察、分析、發(fā)現和提出問題,讓學生用自己的方法探究完全平方公式的結構特征,教師引導學生討論,并對照“平方差公式”的特征和形式.【設計意圖】 讓學生親自觀察、探究、得出結論,激發(fā)興趣加深對公式的理解和掌握通過引導學生自主合作、探究、驗證,培養(yǎng)學生分析問題、幫助學生熟練掌握應用完全平方公式進行因式分解,、合作互學 探究新知(1)(2)(3)(4)思考:相等嗎?相等嗎?學生以小組為單位進行探索交流,教師可參與到學生的討論中,對遇到困難的同學及時予以啟發(fā)和幫助,教師引導,組織練習,巡回輔導,重點問題進行強化、點撥方法、總結規(guī)律,、自我檢測 成果展示(1)(2)(3) (4)判斷題(1)()(2)()(3)()(4)選擇題 是一個完全平方式,那么m的值是()A.4 B.4 C. D.通過計算和交流,使學生能夠正確運用“兩數和的完全平方公式”進行計算四、應用提升 ,則值是【設計意圖】 設置階梯式練習,符合學生身心發(fā)展的規(guī)律,培養(yǎng)學生勤于思考、善于動腦的良好學習習慣,并讓學生感受新舊知識之間的緊密聯系五、經驗總結 反思收獲本節(jié)課你學到了什么?寫出來 173。(1)分解因式前注意是否符合公式的形式和特點;(2)平方項前面是負數時,先把負號提到括號前面;(3)多項式中有公因式應先提公因式,再進一步分解;(4)完全平方公式中的a和b是多項式時,:點評,.【設計意圖】 梳理知識結構形成知識體系.【板書設計】完全平方公式(a+b)2=a2+2ab+b2,(ab)2 = a22ab +b2.【備課反思】,了解公式的幾何背景,了解公式的幾何背景,、化歸、對稱、數形結合、培養(yǎng)學生的發(fā)現能力、求簡意識、應用意識、勇于探索的精神和善于觀察,理解公式的本質,并會運用公式進行簡單的計算,理解公式中的字母含義,在整個教學活動中也存在著一些不足的地方,從時間安排來看,推導公式時時間用得稍微多了點,以致于后面覺得時間緊,學生活動少,雖然該講的地方已講完,但收尾太草率,所以在今后的教學中應把會發(fā)生的各種問題考慮周全,留一定的時間進行糾錯或進行教學反饋或加強師生互動,使新課程的改革從我做起,從我們大家一起做起,為教育事業(yè)的發(fā)展貢獻自己的力量.第三篇:《完全平方公式》教學設計教學目標在具體情景中進一步理解完全平方公式,、難點一、議一議(a+b)的正方形面積是多少?、b拍的兩個正方形面積和是多少?(1)(2)的結果嗎?:學生回答(1)(a+b)(2)a +b(3)因為(a+b)= a +2ab+b ,所以(a+b)(a +b)=a +2ab+bab =2ab,即(1)中的正方形面積比(2)、做一做,師:要利用完全平方公式計算,則要創(chuàng)設符合公式特征的兩數和或兩數差的平方,:,: =(100+2) =(2003)=100 +2 lOO 2+2,=2002 2O0 3十3,=10000+400+4 =400001200+9 =10404 =38809例2.計算:1.(x3)x 2.(2a+b)(2ab+)師生共同分析:1中(x3),板書如下:解:1.(x3)x = x +6x+9x =6x+9師問:此題還有其他方法解嗎?引導學生逆用平方差公式,:分小組討論第(2),:2.(2a+b)(2ab+)=[2a+(b)][2a(b)]=(2a)(b)=4a(b3b+)=4ab +3b三、試一試計算:1.(a+b+c)2.(a+b)師生共同分析:對于1要把多項式完全平方轉化為二項式的完全平方,要使用加法結合律,(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學生動筆:在練習本上解答,:1.(a+b+c)=[a+(b+c)] =(a+b)+2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc四、隨堂練習P381五、小結本節(jié)課進一步學習了完全平方公式,不能出現(a177。b 的錯誤,或(a177。ab+b(漏掉2倍),、作業(yè) P38 教后反思第四篇:完全平方公式教學設計(實用8篇)篇1:《完全平方公式》教學設計一、教材分析:(一)教材的地位與作用本節(jié)內容主要研究的是完全平方公式的推導和公式在整式乘法中的應用。(2)乘法公式是后續(xù)學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習因式分解、分式運算的重要基礎,同時也具有培養(yǎng)學生逐漸養(yǎng)成嚴密的邏輯推理能力的功能。(二)教學目標的確定在素質背景下的數學教學應以學生的發(fā)展為本,學生的能力培養(yǎng)為重,尤其是創(chuàng)新、創(chuàng)造能力,以及培養(yǎng)學生良好的個性品質等。能力目標:滲透建模、化歸、換元、數形結合等思想方法,培養(yǎng)學生的發(fā)現能力、求簡意識、應用意識、解決問題的能力和創(chuàng)新能力。(三)教學重點與難點完全平方公式和平方差公式一樣是主要的乘法公式,其本質是多項式乘法,是學生今后用于計算的一種重要依據,因此,本節(jié)教學的重點與難點如下:本節(jié)的重點是體會公式的發(fā)現和推導過程,理解公式的本質,并會運用公式進行簡單的計算。二、教學方法與手段(一)教學方法:針對初一學生的形象思維大于抽象思維,注意力不能持久等年齡特點,及本節(jié)課實際,采用自主探索,啟發(fā)引導,合作交流展開教學,引導學生主動地進行觀察、猜測、驗證和交流。邊啟發(fā),邊探索
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1