【摘要】運用二次函數(shù)的性質(zhì)求實際問題的最大值和最小值的一般步驟:?求出函數(shù)解析式和自變量的取值范圍?配方變形,或利用公式求它的最大值或最小值。?檢查求得的最大值或最小值對應(yīng)的自變量的值必須在自變量的取值范圍內(nèi)。?頂點式,對稱軸和頂點坐標(biāo)公式:?利潤=售價-進(jìn)價.回味無窮:二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)
2025-05-25 16:24
【摘要】利潤最大問題利潤問題一.幾個量之間的關(guān)系.、售價、進(jìn)價的關(guān)系:利潤=售價-進(jìn)價、單價、數(shù)量的關(guān)系:總價=單價×數(shù)量、單件利潤、數(shù)量的關(guān)系:總利潤=單件利潤×數(shù)量二.在商品銷售中,采用哪些方法增加利潤?問題40元,售價是每件60元,每星期可賣出300件。
2025-05-08 06:14
【摘要】實際問題與二次函數(shù)(1)問題1:求函數(shù)y=-x2+30x的最值問題2:求函數(shù)y=-x2+30x(0x30)的最值問題3:求函數(shù)y=-x2+30x(5x≤10)的最值(一)回顧舊知思考:結(jié)合上面題目,如何求二次函數(shù)的最值?應(yīng)注意什么呢?在什么位置取最值?小結(jié):1、找頂點,畫圖象,看關(guān)系,
2025-07-27 22:07
【摘要】實際問題與二次函數(shù)教案實驗中學(xué)李三紅教學(xué)目標(biāo):1.通過對實際問題情景的分析確定二次函數(shù)的表達(dá)式,并體會二次函數(shù)的意義。2.能用配方法或公式法求二次函數(shù)的最值,并由自變量的取值范圍確定實際問題的最值。復(fù)習(xí)回顧:1、二次函數(shù)的圖象是一條,
2024-12-05 12:40
【摘要】第一篇: 一、教學(xué)內(nèi)容 用二次函數(shù)解決實際問題 二、教材分析 二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗學(xué)生應(yīng)用所學(xué)知識解決實際問題能力的一個綜合考查。新課標(biāo)中要求學(xué)生能通過對實...
2024-11-11 12:02
【摘要】實際問題與一元二次方程(1)構(gòu)建二次函數(shù)模型解決一些實際問題某商品現(xiàn)在的售價為每件60元,每星期可賣出300件.市場調(diào)查反映:如果調(diào)整價格,每漲價1元,每星期要少賣出10件;每降價1元,每星期可多賣出18件,已知商品的進(jìn)價為每件40元,如何定價才能使利潤最大?分析:調(diào)整價格包括漲價和降價兩種情況,我們先來看漲價的情況.(1
2025-05-25 22:03
【摘要】1.某一物體的質(zhì)量為m,它運動時的能量E與它的運動速度v之間的關(guān)系是:212Emv?(m為定值)2.導(dǎo)線的電阻為R,當(dāng)導(dǎo)線中有電流通過時,單位時間所產(chǎn)生的熱量Q與電流強度I之間的關(guān)系是:212QRI?(R為定值)3.g表示
2025-05-22 08:42
【摘要】二次函數(shù)與實際問題2,已知投資生產(chǎn)該產(chǎn)品的有關(guān)數(shù)據(jù)如下:其中年固定成本與生產(chǎn)的件數(shù)無關(guān),(1)若產(chǎn)銷該產(chǎn)品的年利潤分別為y萬元,每年產(chǎn)銷x件,直接寫出y與x的函數(shù)關(guān)系式(2)問年產(chǎn)銷多少件產(chǎn)品時,年利潤為370萬元(3)當(dāng)年產(chǎn)銷量為多少件時,獲得最大年利潤?最大年利潤是多少萬元?,發(fā)現(xiàn)年產(chǎn)量為x(噸)時,所需的費用y(萬元)與(x2+60x+800)成正比例,投入市場
2025-04-02 06:24
【摘要】生活是數(shù)學(xué)的源泉,我們是學(xué)習(xí)數(shù)學(xué)的主人課堂寄語二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型,能指導(dǎo)我們解決生活中的實際問題,同學(xué)們,認(rèn)真學(xué)習(xí)數(shù)學(xué)吧,因為數(shù)學(xué)來源于生活,更能優(yōu)化我們的生活。課題
2024-12-03 00:41
【摘要】(1)主要內(nèi)容:本節(jié)內(nèi)容是如何用二次函數(shù)解決現(xiàn)實生活中的實際問題,或如何用二次函數(shù)解釋現(xiàn)實世界中的一些現(xiàn)象.主要涉及以下三個現(xiàn)實世界中運用二次函數(shù)的問題:探究;;。課時安排:第一課時探究;第二課時探究;
2024-12-04 00:50
【摘要】實際問題與二次函數(shù)—知識講解(提高)【學(xué)習(xí)目標(biāo)】,培養(yǎng)分析問題、解決問題的能力和應(yīng)用數(shù)學(xué)的意識.,深刻理解二次函數(shù)是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型.【要點梳理】要點一、列二次函數(shù)解應(yīng)用題 列二次函數(shù)解應(yīng)用題與列整式方程解應(yīng)用題的思路和方法是一致的,不同的是,學(xué)習(xí)了二次函數(shù)后,表示量與量的關(guān)系的代數(shù)式是含有兩個變量的等式.對于應(yīng)用題要注意以下步驟:
2025-07-03 04:19
【摘要】第一篇:實際問題與二次函數(shù)反思(改完) 《實際問題與二次函數(shù)》教學(xué)反思 人教版實際問題與二次函數(shù)第一個探究題是用二次函數(shù)求解最大利潤問題。題目內(nèi)容是: 已知某商品的進(jìn)價為每件40元。現(xiàn)在的售價是...
2024-10-25 18:59
【摘要】第一篇: (最大利潤問題)導(dǎo)學(xué)案 :會運用二次函數(shù)求實際問題中的最大值或最小值;體會二次函數(shù)是最優(yōu)化問題的重要數(shù)學(xué)模型,感受數(shù)學(xué)的應(yīng)用價值。 : =-x2+2x-3,y=2x2-8x+5有最大...
2024-11-12 20:36
【摘要】二次函數(shù)實際問題訓(xùn)練-橋洞專題1、圖6(1)是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面在l時,拱頂(拱橋洞的最高點)離水面2m,水面寬4m.如圖6(2)建立平面直角坐標(biāo)系,則拋物線的關(guān)系式是( )A.B.C.D.圖6(1)圖6(2)2如圖1是泰州某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離
2025-04-02 06:26
【摘要】 《實際問題中二次函數(shù)的最值問題》教學(xué)設(shè)計 一、教學(xué)目標(biāo) (1)能運用二次函數(shù)的頂點式解決實際問題中的最大值問題,并能利用函數(shù)的圖象與性質(zhì)進(jìn)行解題。 (2)理解函數(shù)圖象頂...
2025-04-05 06:06