【摘要】021x(天)y(千張)311164BACD下面是某市2020年3月18日至4月20日每天最高氣溫變化的曲線圖.t(d)2034102030B(32,)C(34,)T(℃)10(注:3月18日為第一天)1
2024-11-30 08:47
【摘要】.瞬時變化率曲線上一點處的切線教學設計引入問題背景:本節(jié)課是高等代數(shù)微積分知識的基礎,是導數(shù)概念產(chǎn)生過程。微積分是十七世紀由英國數(shù)學家牛頓、德國數(shù)學家萊布尼茨提出的,體現(xiàn)了變化過程中的極限思想,為學生以后微積分學習奠定基礎。矚慫潤厲釤瘞睞櫪廡賴賃軔。教材分析:本節(jié)課是在學習了平均變化率后的一節(jié)課,讓學生體會由區(qū)間上的變化過渡到一點處的變化瞬時變化率,滲透微分思想。讓學生體會“局部
2025-04-25 12:10
【摘要】平均變化率一、填空題1.函數(shù)關系h(t)=-++10,從t=0到t=,自變量增量是________.2.在x=1附近,取Δx=,在四個函數(shù)①y=x;②y=x2;③y=x3;④y=1x中,平均變化率最大的是________(填序號).3.已知曲線y=14x2和這條曲線上的一點P(1,
2024-11-27 11:50
【摘要】PQoxyy=f(x)割線切線T)斜率無限趨限趨近點P處切,時0無限趨限當(PQkx?))()(xxfxxfkPQ?????回顧設物體作直線運動所經(jīng)過的路程為s=f(t)。以t0為起始時刻,物體在?t時間內(nèi)的平均速度為
2024-11-29 20:20
【摘要】《變化率與導數(shù)》教學目標?了解導數(shù)概念的實際背景,體會導數(shù)的思想及其內(nèi)涵?教學重點:?導數(shù)概念的實際背景,導數(shù)的思想及其內(nèi)涵變化率問題34()3Vrr??問題1氣球膨脹率33()4VrV??2()4.96.510httt????問題
2024-11-30 12:15
【摘要】變化率問題微積分主要與四類問題的處理相關:?一、已知物體運動的路程作為時間的函數(shù),求物體在任意時刻的速度與加速度等;?二、求曲線的切線;?三、求已知函數(shù)的最大值與最小值;?四、求長度、面積、體積和重心等。導數(shù)是微積分的核心概念之一它是研究函數(shù)增減、變化快慢、最大(?。┲档葐栴}最一般、最有效的工具。問題1氣
2024-11-29 12:02
【摘要】導數(shù)的概念引入:?在高臺跳水運動中,平均速度不能反映他在這段時間里運動狀態(tài),需要用瞬時速度描述運動狀態(tài)。我們把物體在某一時刻的速度稱為瞬時速度.又如何求瞬時速度呢?平均變化率近似地刻畫了曲線在某一區(qū)間上的變化趨勢.?如何精確地刻畫曲線在一點處的變化趨勢呢?)(2????ttth求:從
【摘要】第三章導數(shù)及其應用第2課時曲線上一點處的切線教學目標:;、求法及切線方程的求法;“局部以直代曲”和“用割線的逼近切線”的思想方法.教學重點:理解曲線在一點處的切線的定義,以及曲線在一點處的切線的斜率的定義,掌握曲線在一點處切線斜率及切線方程的求法教學難點:理解曲線在一點處的
2024-12-01 17:30
【摘要】021x(天)y(千張)311164BACD下面是某市2020年3月18日至4月20日每天最高氣溫變化的曲線圖.t(d)2034102030B(32,)C(34,)T(℃)10(注:3月18日為第一天)13
2024-11-29 17:10
【摘要】《導數(shù)的幾何意義》先來復習導數(shù)的概念定義:設函數(shù)y=f(x)在點x0處及其附近有定義,當自變量x在點x0處有改變量Δx時函數(shù)有相應的改變量Δy=f(x0+Δx)-f(x0).如果當Δx?0時,Δy/Δx的極限存在,這個極限就叫做函數(shù)f(x)在點x0處的導數(shù)(或變化率)記作
【摘要】江蘇省建陵高級中學2020-2020學年高中數(shù)學瞬時變化率與瞬時加速度導學案(無答案)蘇教版選修1-1【學習目標】1.了解在非常短時間內(nèi)的平均速度、平均加速度十分接近一個時刻的瞬時速度、瞬時加速度;【課前預習】1.設物體的運動規(guī)律是s=s(t),則物體在t到t+△t這段時間內(nèi)的平均速度為st=
2024-12-01 19:53
【摘要】3.1《變化的快慢與變化率》§1變化的快慢與變化率樹高:15米樹齡:1000年高:15厘米時間:兩天實例1分析銀杏樹雨后春筍實例2分析物體從某一時刻開始運動,設s表示此物體經(jīng)過時間t走過的路程,在運動的過程中測得了一些數(shù)據(jù),如下表.t(秒)025
2024-11-30 13:30
【摘要】1、求函數(shù)在某點的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導數(shù)主要有哪些方面的應用?應用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導數(shù)與函數(shù)的單調(diào)性之間的關系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導數(shù)法1)如果在某區(qū)
2024-11-30 08:56
【摘要】-導數(shù)1、平均變化率一般的,函數(shù)在區(qū)間上的平均變化率為)(xf][21,xx2121)()(xxxfxf??2、平均變化率是曲線陡峭程度的“數(shù)量化”,是一種粗略的刻畫練習1、已知函數(shù)分別計算在下列區(qū)間上
【摘要】江蘇省響水中學高中數(shù)學第3章《導數(shù)及其應用》瞬時變化率導數(shù)(1)導學案蘇教版選修1-1學習目標:1.理解并掌握曲線在某一點處的切線的概念;2.理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;3.理解切線概念的實際背景,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生轉化問題的能力及數(shù)形結合思想.
2024-12-17 06:44