【摘要】初三數(shù)學(xué)相似三角形(一)相似三角形是初中幾何的一個重點,同時也是一個難點,本節(jié)復(fù)習(xí)的目標是:1.理解線段的比、成比例線段的概念,會根據(jù)比例線段的有關(guān)概念和性質(zhì)求線段的長或兩線段的比,了解黃金分割。2.會用平行線分線段成比例定理進行有關(guān)的計算、證明,會分線段成已知比。3.能熟練應(yīng)用相似三角形的判定和性質(zhì)解答有關(guān)的計算與證明題。4.能熟練運用相似
2025-07-02 23:33
【摘要】鏈學(xué)教育2016秋季初三數(shù)學(xué)培優(yōu)班68036235姓名王瑜上課時間2016年9月3日上午10:10-12:10輔導(dǎo)科目數(shù)學(xué)年級九年級課時3課題名稱比例線段、相似三角形教學(xué)目標1、理解放縮與相似形的概念,
2025-04-26 05:46
【摘要】相似三角形對應(yīng)角相等,對應(yīng)邊成比例的三角形叫相似三角形.三角形相似判定:,對應(yīng)邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。1:兩角對應(yīng)相等,兩三角形相似。2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。
2024-11-21 12:54
【摘要】2016專題:《全等三角形證明》1.已知:D是AB中點,∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點,求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
2025-04-02 07:41
【摘要】相似三角形一、課改實驗區(qū)中考試題點旋轉(zhuǎn).三角板繞在點角的頂點落使角的透明三角板含的中點,小慧拿著為中,等腰PPBCPBACACABABC,,,, °°°===3030120∠8???;:,、、,CFPBPEFEACABa??∽
2024-12-01 00:57
【摘要】精品資源相似三角形題目集錦1.操作如圖,在正方形ABCD中,P是CD上一動點(與C、D不重合).使得三角形的直角頂點與P點重合,并且一條直角邊始終經(jīng)過點B,另一直角邊與正方形的某一邊所在直線交于點E.探究(1)觀察操作猜想哪一個三角形也△.(2)當(dāng)點P位于CD的中點時,你得到的三角形與△BPC的周長比是多少?
2024-08-19 03:40
【摘要】官方網(wǎng)站:相似三角形及其性質(zhì)一、課堂講解知識點1、三角對應(yīng)相等,三邊對應(yīng)成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質(zhì),也是三角形相似的判定方法。注意
2025-04-26 07:51
【摘要】......個性化輔導(dǎo)授課案教師:盧天明學(xué)生:時間2016年月日時段相似三角形的判定教學(xué)目
2025-04-26 07:43
【摘要】......【一】知識梳理【1】比例①定義:四個量a,b,c,d中,其中兩個量的比等于另兩個量的比,那么這四個量成比例②形式:a:b=c:d,③性質(zhì):基本性質(zhì):ac=bd1、可以把比例式與等積式互
2025-04-03 06:30
【摘要】1.如圖,在△ABC中,D是BC上一點,E是AD上一點,且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點D在BC邊上移動,連接AD,將△ADC沿直線AD翻折,點C的對應(yīng)點為C1.(1)當(dāng)AC1⊥BC時,CD的長是多少?(2)設(shè)C
2025-04-03 06:32
【摘要】相似三角形說課稿各位評委,各位老師:大家好,我是趙勇連。今天我講的內(nèi)容是義務(wù)教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)《相似三角形》。我將從五個方面進行我的說課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務(wù)教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了線段的比,形狀相同的圖形及相似多邊形
2024-09-04 19:21
【摘要】......相似三角形綜合培優(yōu)題型基礎(chǔ)知識點梳理:知識點1有關(guān)相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2)如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,
2025-07-04 00:16
【摘要】九、如下圖,△ABC中,AD∥BC,連結(jié)CD交AB于E,且AE∶EB=1∶3,過E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.十一、下圖中,E為平行四邊形ABCD的對角線AC上一點,AE∶EC=1∶3,BE的延長線交CD的延長線于G,交AD于F,求證:BF∶FG=1∶2. 26.(2010年長沙)如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y
2025-04-03 06:31
【摘要】初三數(shù)學(xué)知識點歸納:相似三角形 初三數(shù)學(xué)知識點歸納:相似三角形 相似三角形(7個考點) 考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小 考核要求:(1)理解相似...
2025-04-03 12:38
【摘要】相似三角形知識點總結(jié)知識點1、三角對應(yīng)相等,三邊對應(yīng)成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質(zhì),也是三角形相似的判定方法。注意:(1)相似比是有順序的。(2)對應(yīng)性,兩個三角形相似時,通常把對應(yīng)頂點寫在對應(yīng)位置,這樣寫比較容易找到相似三角形的對應(yīng)角和對應(yīng)邊
2025-05-18 22:06