【摘要】一、下列各題有“病”嗎?如果有“病”,請(qǐng)寫出“病因”,沒有解答的,請(qǐng)你解答,并寫出你認(rèn)為易讓別人犯錯(cuò)的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應(yīng)增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點(diǎn)E為邊CD上的一點(diǎn),AE的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)F,請(qǐng)你寫出圖中的
2024-12-06 14:14
【摘要】相似三角形x是6、3、2的第四比例項(xiàng),則x=_____;若2:(a-3)=(a-3):8,則a=________.:2x-5y=0,則x:y=_____;._______;????yxyyyx:AD∥BE∥CF,則=;=;=
2024-11-22 22:11
【摘要】相似三角形相似三角形?相似三角形的概念?相似三角形的基本性質(zhì)?相似三角形的預(yù)備定理兩幅形狀相同大小不等的長(zhǎng)城的圖片是相似的。ABCDEF△ABC與△DEF三個(gè)角對(duì)應(yīng)相等,三條邊對(duì)應(yīng)成比例的兩個(gè)三角形,做相似三角形(similartrianglec)AB
2024-11-21 05:43
【摘要】相似三角形復(fù)習(xí)(2)△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是()A∠ACP=∠BB∠APC=∠ACBCAC2=AP·ABDAC:CP=AB:BCABCP2、如圖,D、E分別是AB、AC上兩點(diǎn),CD與BE相
2024-11-21 12:54
【摘要】宇軒圖書下一頁上一頁末頁目錄首頁考點(diǎn)知識(shí)精講宇軒圖書下一頁上一頁末頁目錄首頁考點(diǎn)訓(xùn)練中考典例精析舉一反三考點(diǎn)知識(shí)精講宇軒圖書下一頁上一
2025-05-10 22:19
【摘要】2016專題:《全等三角形證明》1.已知:D是AB中點(diǎn),∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
2025-04-02 07:41
【摘要】相似三角形復(fù)習(xí)(一)給你一個(gè)銳角三角形ABC和一條直線MN;問題你能用直線MN去截三角形ABC,使截得的三角形與原三角形相似嗎?相似三角形DE∥BC⊿ADE∽⊿ABCABAEACAD?∠DAE=∠CAB⊿ADE∽⊿ABC基本圖形判定方法∠AE
2024-12-06 13:48
【摘要】復(fù)習(xí)課一、復(fù)習(xí):1、相似三角形的定義是什么?答:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形.2、判定兩個(gè)三角形相似有哪些方法?答:A、用定義;B、用預(yù)備定理;C、用判定定理1、2、3.D、直角三角形相似的判定定理3、相似三角形有
2024-12-06 14:13
【摘要】ABCDEABC21OCBADOCDABABCDE△ABC與△DEF是相似三角形的是()A.B.∠B=∠E,C.∠C=∠F,D.∠C=∠F,∠A=∠DA
2024-12-11 10:09
【摘要】神河中學(xué):陳波學(xué)習(xí)的目標(biāo)?(1)通過復(fù)習(xí),梳理本章知識(shí),構(gòu)建知識(shí)網(wǎng)絡(luò).?(2)通過具體實(shí)例認(rèn)識(shí)圖形的相似,探索相似圖形的性質(zhì),知道相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例,面積的比等于對(duì)應(yīng)邊的比的平方。?(3)了解兩個(gè)三角形相似的概念,探索兩個(gè)三角形相似的條件。?(4)了解圖形的位似,能
2024-12-06 17:38
【摘要】第22講┃相似三角形及其應(yīng)用第22講┃考點(diǎn)聚焦考點(diǎn)聚焦考點(diǎn)1相似圖形的有關(guān)概念相似圖形形狀相同的圖形稱為相似圖形定義如果兩個(gè)多邊形滿足對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等,那么這兩個(gè)多邊形相似相似多邊形相似比相似多邊形對(duì)應(yīng)邊的比稱為相似比k相似三角形兩個(gè)三角形的對(duì)應(yīng)角相
2025-05-09 03:04
【摘要】求三角形面積常用方法直接法ahS△=12ah等積法S1S2等比法S1=S2(等底同高)(同底等高)S1S212SaSb?(同高不同底)(浙教九上)如圖,DE∥BC,則△ADE與△ABC的相
2024-08-20 10:37
【摘要】相似三角形期末復(fù)習(xí)知識(shí)要點(diǎn)+練習(xí)提高萬州德澳中學(xué)初三數(shù)學(xué)備課組像這樣,對(duì)于四條線段a、b、c、d,如果其中兩條線段的長(zhǎng)度的比等于另外兩條線段的比,如(或a∶b=c∶d),那么,這四條線段叫做成比例線段,簡(jiǎn)稱比例線段.此時(shí)也稱這四條線段成比例.dcba?要判斷線段是否
2024-08-07 21:07
【摘要】相似三角形的性質(zhì)相似三角形的———————,各對(duì)應(yīng)邊——————。對(duì)應(yīng)角相等成比例??jī)蓚€(gè)角對(duì)應(yīng)相等的兩個(gè)三角形相似。兩邊對(duì)應(yīng)成比例且夾角相等的兩個(gè)三角形相似。三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似。2.相似三角形的有哪些性質(zhì)??如圖,已知△ABC∽△A′B′C′,相似比是
2024-12-06 13:58
【摘要】相似三角形性質(zhì)(復(fù)習(xí))執(zhí)教:上南南校劉春喜知識(shí)回顧相似三角形的性質(zhì):1、相似三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例.2、相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比、對(duì)應(yīng)角平分線的比和周長(zhǎng)的比都等于相似比.3、相似三角形面積的比等于相似比的平方.性質(zhì)運(yùn)用1、兩個(gè)相似三角形的相似比為1︰3,它們的對(duì)