【摘要】高中數(shù)學(xué)之立體幾何平面的基本性質(zhì)公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi).公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線.公理3經(jīng)過不在同一直線上的三個點,有且只有一個平面.根據(jù)上面的公理,可得以下推論.推論1經(jīng)過一條直線和這條直線外一點,有且只有一個平面.推論2經(jīng)過兩條相交直線,有
2024-08-23 19:31
【摘要】高中數(shù)學(xué)解析幾何第一部分:直線1、直線的傾斜角與斜率1.傾斜角α(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍::直線傾斜角α的正切值叫做這條直線的斜率.(1).傾斜角為的直線沒有斜率。(2).每一條直線都有唯一的傾斜角,但并不是每一條直線都存在斜率(直線垂直于軸時,其斜率不存在),這就決定了我們在研究直線的有關(guān)
2025-04-13 05:15
【摘要】此資料由網(wǎng)絡(luò)收集而來,如有侵權(quán)請告知上傳者立即刪除。資料共分享,我們負(fù)責(zé)傳遞知識。 高中數(shù)學(xué)幾何定理知識點總結(jié) 1過兩點有且只有一條直線 2兩點之間線段最短 3同角或等角的補角相等...
2024-11-19 00:15
【摘要】解析幾何解答題1、橢圓G:的兩個焦點為F1、F2,短軸兩端點B1、B2,已知F1、F2、B1、B2四點共圓,且點N(0,3)到橢圓上的點最遠(yuǎn)距離為(1)求此時橢圓G的方程;(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點E、F,Q為EF的中點,問E、F兩點能否關(guān)于過點P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.
【摘要】高中數(shù)學(xué)立體幾何知識點歸納總結(jié)一、立體幾何知識點歸納第一章空間幾何體(一)空間幾何體的結(jié)構(gòu)特征(1)多面體——由若干個平面多邊形圍成的幾何體.圍成多面體的各個多邊形叫叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做頂點。旋轉(zhuǎn)體——把一個平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)形成的封閉幾何體。其中,這條定直線稱為旋轉(zhuǎn)體的軸。
2025-04-13 05:14
【摘要】高中數(shù)學(xué)解析幾何圓錐曲線,點、分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標(biāo);(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.,在直角坐標(biāo)系中,設(shè)橢圓的左右兩個焦點分別為.過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.(1)求橢圓的方
2025-08-02 02:05
【摘要】高中課程復(fù)習(xí)專題1高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)
2024-12-29 02:36
【摘要】空間幾何體知識點總結(jié)一、空間幾何體的結(jié)構(gòu)特征1.柱、錐、臺、球的結(jié)構(gòu)特征由若干個平面多邊形圍成的幾何體稱之為多面體。圍成多面體的各個多邊形叫叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做頂點。把一個平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)形成的封閉幾何體稱之為旋轉(zhuǎn)體,其中定直線稱為旋轉(zhuǎn)體的軸。(1)柱棱柱:一般的,有兩個面互相平行,其余各面都是四邊形,
【摘要】“解析幾何”一網(wǎng)打盡(一)直線1.(1)點斜式(直線過點,且斜率為).(2)斜截式(b為直線在y軸上的截距).(3)一般式(其中A、B不同時為0).特別的:(1)已知直線縱截距,常設(shè)其方程為或;已知直線橫截距,常設(shè)其方程為(直線斜率k存在時,為k的倒數(shù)),常設(shè)其方程為或(2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0.直線兩截距相等
2025-06-27 20:19
【摘要】一、直線與方程基礎(chǔ):1、直線的傾斜角:αα 2、直線的斜率:;注意:傾斜角為90°的直線的斜率不存在。3、直線方程的五種形式:①點斜式:;②斜截式:;③一般式:;④截距式:;⑤兩點式:注意:各種形式的直線方程所能表示和不能表示的直線。4、兩直線平行與垂直的充要條件:,,;.5、相關(guān)公式:
2025-04-26 12:34
【摘要】第三章一、直線的傾斜角與斜率1、傾斜角的概念:(1)傾斜角:當(dāng)直線與x軸相交時,取x軸作為基準(zhǔn),x軸正向與直線向上方向之間所成的角a叫做直線的傾斜角。(2)傾斜角的范圍:當(dāng)與x軸平行或重合時,規(guī)定它的傾斜角a為0°因此0°≤a<180°。2、直線的斜率(1)斜率公式:K=tana(a≠90°)(2)斜率坐標(biāo)公式:K
2024-08-20 18:34
【摘要】解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。3、
2025-01-23 09:02
【摘要】第一章立體幾何初步特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)柱體、錐體、臺體的體積公式(4)球體的表面積和體積公式:V=;S=第二章直線與平面的位置關(guān)系、直線、平面之間的位置關(guān)系1平面含義:平面是無限延展的2三個公理:(1)公理1:如果一
2025-04-13 05:11
【摘要】高中數(shù)學(xué)競賽專題講座(解析幾何)一、基礎(chǔ)知識1.橢圓的定義,第一定義:平面上到兩個定點的距離之和等于定長(大于兩個定點之間的距離)的點的軌跡,即|PF1|+|PF2|=2a(2a|F1F2|=2c).第二定義:平面上到一個定點的距離與到一條定直線的距離之比為同一個常數(shù)e(0e1)的點的軌跡(其中定點不在定直線上),即(0e1).第
2025-08-04 03:53
【摘要】1.直線的傾斜角與斜率:(1)直線的傾斜角:在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向旋轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為叫做直線的傾斜角.傾斜角,斜率不存在.(2)直線的斜率:.(、).2.直線方程的五種形式:(1)點斜式:(直線過點,且斜率為).注:當(dāng)直線斜率不存在時,不能用點斜式表示,此時方程為.(2)斜截式:(b
2025-07-01 16:55