【摘要】解析幾何解答題1、橢圓G:的兩個焦點為F1、F2,短軸兩端點B1、B2,已知F1、F2、B1、B2四點共圓,且點N(0,3)到橢圓上的點最遠距離為(1)求此時橢圓G的方程;(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點E、F,Q為EF的中點,問E、F兩點能否關(guān)于過點P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.
2025-04-13 05:15
【摘要】高中數(shù)學解析幾何圓錐曲線,點、分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標;(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.,在直角坐標系中,設(shè)橢圓的左右兩個焦點分別為.過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.(1)求橢圓的方
2025-08-02 02:05
【摘要】范文范例參考圓錐曲線第3講拋物線【知識要點】1、拋物線的定義平面內(nèi)到某一定點的距離與它到定直線()的距離相等的點的軌跡叫拋物線,這個定點叫做拋物線的焦點,定直線叫做拋物線的準線。注1:在拋物線的定義中,必須強調(diào):定點不在定直線上,否則點的軌跡就不是一個拋物線,而是過點且垂直于直線的一條直線。注2:拋物線的定義也可以說成是:平面內(nèi)到某一定點
【摘要】解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。3、
2025-01-23 09:02
【摘要】§07.直線和圓的方程知識要點一、直線方程.1.直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.注:①當或時,直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當直線的斜率一定時,其傾斜角也對應(yīng)確
【摘要】高中數(shù)學解析幾何第一部分:直線1、直線的傾斜角與斜率1.傾斜角α(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍::直線傾斜角α的正切值叫做這條直線的斜率.(1).傾斜角為的直線沒有斜率。(2).每一條直線都有唯一的傾斜角,但并不是每一條直線都存在斜率(直線垂直于軸時,其斜率不存在),這就決定了我們在研究直線的有關(guān)
【摘要】1圓錐曲線定義的深層及綜合運用一、橢圓定義的深層運用例1.如圖1,P為橢圓上一動點,為其兩焦點,從的外角的平分線作垂線,垂足為M,將F2P的延長線于N,求M的軌跡方程。圖1解析:易知故在中,則點M的軌跡方程為。二、雙曲線定義的深層運用例2.如圖2,為雙曲線的兩焦點
2025-01-17 20:27
【摘要】新課標立體幾何解析幾何??碱}匯總1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-08-01 11:22
【摘要】七夕,古今詩人慣詠星月與悲情。吾生雖晚,世態(tài)炎涼卻已看透矣。情也成空,且作“揮手袖底風”罷。是夜,窗外風雨如晦,吾獨坐陋室,聽一曲《塵緣》,合成詩韻一首,覺放諸古今,亦獨有風韻也。乃書于紙上。畢而臥。凄然入夢。乙酉年七月初七。-----嘯之記。解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則
2025-01-23 20:51
【摘要】-1-高中數(shù)學解析幾何知識點大總結(jié)第一部分:直線一、直線的傾斜角與斜率(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍:????1800?:直線傾斜角α的正切值叫做這條直線的斜率.?tan?k(1).傾斜角為?90的直線沒
2024-12-29 15:18
【摘要】第一部分:直線1、直線的傾斜角與斜率1.傾斜角α(1)定義:直線l向上的方向與x軸正向所成的角叫做直線的傾斜角。(2)范圍::直線傾斜角α的正切值叫做這條直線的斜率.(1).傾斜角為的直線沒有斜率。(2).每一條直線都有唯一的傾斜角,但并不是每一條直線都存在斜率(直線垂直于軸時,其斜率不存在),這就決定了我們在研
2024-08-23 19:14
【摘要】啟東中學內(nèi)部資料請注意保存,嚴禁外傳!啟東中學內(nèi)部資料1一、選擇題1.(遼寧理,4)已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為A.22(1)()xy???B.22(1)()???C.D.xy【解析】圓心在x+y=0上,排除C、D,再結(jié)合
2025-04-13 03:22
【摘要】高中數(shù)學解析幾何復(fù)習題1.已知雙曲線-=1(a0,b0)的一條漸近線方程是y=x,它的一個焦點在拋物線y2=24x的準線上,則雙曲線的方程為( )A.-=1B.-=1C.-=1D.-=1【答案】B【解析】由雙曲線-=1(a0,b0)的一條漸近線方程是y=x,則=①,拋物線y2=24x的準線方程為x=-6
2025-04-26 12:28
【摘要】 【教學目標】 ?。ㄒ唬┲R與技能 (1)掌握圓的標準方程,能根據(jù)圓心、半徑寫出圓的標準方程. (2)會用待定系數(shù)法求圓的標準方程. ?。ǘ┻^程與方法 進一步培養(yǎng)學生能用解析法研究幾何問題的能力,滲透數(shù)形結(jié)合思想,通過圓的標準方程解決實際問題的學習,注意培養(yǎng)學生觀察問題、發(fā)現(xiàn)問題和解決問題的能力. ?。ㄈ┣楦袘B(tài)度與價值觀 通過運用圓的知
2025-06-16 23:59
【摘要】歡迎各位領(lǐng)導光臨批評指正。希望同行們留下寶貴的意見,謝謝!作業(yè)講評:P8211、求函數(shù)f(θ)=的最大值和最小值。Sin-1θθcos-2析:令y=Sin-1θθcos-2θθycos-sin=2y-1y21+
2024-12-01 08:50