【摘要】2020年12月19日星期六Ctrl+Alt+M=菜單欄;Ctrl+Alt+T=工具欄;Ctrl+Alt+S=滾動條;Ctrl+Alt+H=窗口;Ctrl+Alt+B=背景xyo如圖,在直角坐標(biāo)系中,平分第一、三象限的直線的方程是(1)直線上一點M(x0,y0)的坐標(biāo)x0,y0是方程x-y=0的解;x-y=0滿足:
2024-11-24 01:35
【摘要】新課講解:函數(shù)y=ax2的圖象是關(guān)于y軸對稱的拋物線.這條拋物線是所有以方程y=ax2的解為坐標(biāo)的點組成的.oyx這就是說:如果點M(x0,y0)是拋物線上的點任意一點,那么(x0,y0)一定是這個方程的解;反過來,如果(x0,y0)是方程y=ax2的解,那么以它
2024-11-22 12:25
【摘要】雙曲線的簡單幾何性質(zhì)(2)關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)關(guān)于x軸、y軸、原點對稱漸進線..yB2A1A2B1xOF2F1xB1y
2024-11-22 08:36
【摘要】我努力,我堅持,我一定能成功222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)22221xyab??22221
2025-06-21 18:19
【摘要】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)|M
2024-12-01 16:21
【摘要】雙曲線的定義及標(biāo)準(zhǔn)方程橢圓的第一定義到平面上兩定點F1,F(xiàn)2的距離之和(大于|F1F2|)為常數(shù)的點的軌跡aPFPF221???橢圓的第二定義(準(zhǔn)線)?點M與定點F的距離和它到定直線L的距離的比是常數(shù)的點的軌跡。標(biāo)準(zhǔn)方程圖象范圍對稱性
2024-11-21 01:25
【摘要】1《雙曲線及其標(biāo)準(zhǔn)方程》教學(xué)設(shè)計貴陽39中李明新課程教學(xué),更強調(diào)學(xué)生的主體性,突出學(xué)生的主體性,采用“合作、自主、探究”的學(xué)習(xí),又要還給學(xué)生更大的自主學(xué)習(xí)空間。所以如何充分利用課堂時間,調(diào)動學(xué)生的積極性,提高課堂效益是數(shù)學(xué)教師面臨的一個重要問題。我想從我自己的實踐來談?wù)勅绾卧O(shè)計一節(jié)課,使我的教學(xué)更適應(yīng)時代的發(fā)展,
2024-12-05 00:12
【摘要】精品資源雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識教學(xué)點使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點在與橢圓的類比中獲得雙曲線的知識,從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個比較深刻的認識.二、教材分析1.重點:雙曲線的
2025-07-23 15:53
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(教學(xué)設(shè)計)一、教學(xué)目標(biāo):知識與技能:()理解雙曲線的定義及焦點、焦距的意義,掌握雙曲線的標(biāo)準(zhǔn)方程.()根據(jù)不同的題設(shè)條件,正確區(qū)分兩種不同的標(biāo)準(zhǔn)方程.過程與方法:()引導(dǎo)學(xué)生,通過與橢圓的對比去探索雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),加深對數(shù)形結(jié)合思想及事物類比的研究方法的認識.()從建立坐標(biāo)系、簡化方程過程中,培養(yǎng)學(xué)生觀察、分析、推理的能力.情感態(tài)
2025-07-23 18:41
【摘要】1、我們知道和等于常數(shù)2a(2a|F1F2|)的點的軌跡是平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的橢圓1F2F??0,c???0,cXYO??yxM,①如圖(A
2025-08-14 03:58
【摘要】貴港市東龍中心小學(xué)韋雪球雙曲線及其標(biāo)準(zhǔn)方程1.什么叫做橢圓?2a兩定點F1、F2(|F1F2|=2c)和的距離的等于常數(shù)(2a|F1F2|=2c0)的點的軌跡.平面內(nèi)與1F2F??0,c???0,cXYO??yxM,引入問題:兩定點F1、F2
2024-11-21 23:30
【摘要】上海市控江中學(xué)柳敏一、復(fù)習(xí)回顧思考并回答下列問題1、橢圓的定義是什么?2、橢圓定義中有哪些注意點?3、橢圓的標(biāo)準(zhǔn)方程是怎樣的?二、講授新課問題:如果把橢圓定義中的和改成差:12||||2PFPFa??或21||||2PFPFa??,即:12||
2024-11-24 18:20
【摘要】雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)一、雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點的軌跡叫雙曲線。兩定點F1、F2是焦點,兩焦點間的距離|F1F2|是焦距,用2c表示,常數(shù)用2表示。(1)若|MF1|-|MF2|=2時,曲線只表示焦點F2所對應(yīng)的一支雙曲線.(2)若|MF1|-|MF2|=-2時,曲線只表
2025-07-23 18:45
【摘要】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)雙曲
2024-11-29 19:31
【摘要】教學(xué)設(shè)計方案課題名稱雙曲線及其標(biāo)準(zhǔn)方程姓名王菲菲工作單位河北黃驊中學(xué)年級學(xué)科高二數(shù)學(xué)教材版本人教A版一、教學(xué)內(nèi)容分析在高中數(shù)學(xué)中,雙曲線及其標(biāo)準(zhǔn)方程的課程,在分析初等函數(shù)之前,是了解笛卡爾坐標(biāo)圖線的重點。他是為培養(yǎng)學(xué)生對于坐標(biāo)圖線了解函數(shù)關(guān)系打下基礎(chǔ),其關(guān)鍵在于了解學(xué)生對于圖像認識的能力,培養(yǎng)學(xué)生用數(shù)軸圖形了解函數(shù)信息的能力。現(xiàn)如今在數(shù)學(xué)
2025-08-14 04:13