freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

離散數(shù)學(xué)課后習(xí)題-展示頁

2025-08-03 09:35本頁面
  

【正文】 ,3,4,4,5,5,6,6,1,2,1,3,1,4,1,5,1,6,2,4,2,6,3,6}3設(shè)A={1,2,3,4,5,6},B={1,2,3},從A到B的關(guān)系R={〈x,y〉|x=2y},求(1)R (2) R1 。答:R的關(guān)系矩陣= R的關(guān)系矩陣=3集合A={1,2,…,10}上的關(guān)系R={x,y|x+y=10,x,yA},則R 的性質(zhì)為( )。答:2,63設(shè)A={3,6,9},A上的二元運(yùn)算*定義為:a*b=min{a,b},則在獨(dú)異點(diǎn)A,*中,單位元是( ),零元是( );答:9,3(半群與群部分)3設(shè)〈G,*〉是一個群,則(1) 若a,b,x∈G,ax=b,則x=( );(2) 若a,b,x∈G,ax=ab,則x=( )。答: 6,44代數(shù)系統(tǒng)G,*是一個群,則G的等冪元是(    )。答:5,104群G,*的等冪元是(  ),有(   )個。答:循環(huán)群,任一非單位元4設(shè)〈G,*〉是一個群,a,b,c∈G,則(1) 若ca=b,則c=( );(2) 若ca=ba,則c=( )。答:H,是群 或 a,b G, abH,a1H 或 a,b G,ab1H 4群<A,*>的等冪元有(   )個,是(   ),零元有(   )個。答:k4在自然數(shù)集N上,下列哪種運(yùn)算是可結(jié)合的?( ) (1) a*b=ab  (2) a*b=max{a,b} (3) a*b=a+2b (4) a*b=|ab|答:(2)50、任意一個具有2個或以上元的半群,它( )。(1) 2階  (2) 3 階 (3) 4 階  (4) 6 階答:(3)(數(shù)理邏輯部分)二、求下列各公式的主析取范式和主合取范式: (P→Q)R  解:(P→Q)R(PQ )R(PR)(QR) (析取范式)(P()R)((PP)QR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)((P→Q)R)(PQR)(PQR)(PQR) (PQR)( PQR)(原公式否定的主析取范式)(P→Q)R(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)(PR)(QR)P 解: (PR)(QR)P(析取范式)(P()R)((PP)QR)(P()(RR))(PQR)(PQR)(PQR)(PQR)( PQR)( PQR)(PQR)(PQR) (PQR)(PQR)(PQR)(PQR) (PQR)(PQR) (主析取范式)((PR)(QR)P)(PQR)(PQR)(原公式否定的主析取范式)(PR)(QR)P (PQR)(PQR)(主合取范式)(P→Q)(RP)解:(P→Q)(RP) (PQ)(RP)(合取范式)(PQ(RR))(P())R)(PQR)(PQR)(PQR)(PQR) (PQR)(PQR)(PQR)(主合取范式) ((P→Q)(RP))(PQR)(PQR)(PQR)(PQR)(PQR)(原公式否定的主合取范式)(P→Q)(RP) (PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)Q→(PR) 解:Q→(PR)QPR(主合取范式)(Q→(PR))(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(原公式否定的主合取范式)Q→(PR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)P→(P(Q→P)) 解:P→(P(Q→P))P(P(QP))PP T (主合取范式)(PQ)(PQ)(PQ)(PQ)(主析取范式)(P→Q)(RP)解: (P→Q)(RP)(PQ)(RP)(PQ)(RP)(析取范式)(PQ(RR))(P()R)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)((P→Q)(RP))(PQR)(PQR)(PQR) (PQR)(PQR)(原公式否定的主析取范式)(P→Q)(RP)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)P(P→Q)     解:P(P→Q)P(PQ)(PP)QT(主合取范式)(PQ)(PQ)(PQ)(PQ)(主析取范式)(R→Q)P解:(R→Q)P(RQ )P (RP)(QP) (析取范式) (R()P)((RR)QP)(RQP)(RQP)(RQP)(RQP)(PQR)(PQR)(PQR)(主析取范式)((R→Q)P)(PQR)(PQR)(PQR) (PQR)(PQR)(原公式否定的主析取范式)(R→Q)P(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)P→Q 解:P→QPQ(主合取范式)(P())((PP)Q)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(主析取范式) PQ  解: PQ (主合取范式)(P())((PP)Q)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(主析取范式)1PQ解:PQ(主析取范式)(P())((PP)Q)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(主合取范式)1(PR)Q解:(PR)Q(PR)Q(PR)Q(PQ)(RQ)(合取范式)(PQ(RR))((PP)QR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)(PR)Q (PQR)(PQR)(PQR)(PQR)(PQR) (原公式否定的主析取范式)(PR)Q(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)1(PQ)R解:(PQ)R(PQ)R(PQ)R(析取范式)(PQ(RR))((PP)()R)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)(PQ)R(PQ)R(PQ)R(析取范式)(PR)(QR)(合取范式)(P()R)((PP)QR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)1(P(QR))(P(QR))解:(P(QR))(P(QR))(P(QR))(P(QR))(PQ)(PR)(PQ)(PR)(合取范式)(PQ(RR))(P()R)(PQ(RR))(P()R)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)(P(QR))(P(QR))(PQR)(PQR)(原公式否定的主合取范式)(P(QR))(P(QR))(PQR)(PQR)(主析取范式)1P(P(Q(QR)))解:P(P(Q(QR))) P(P(Q(QR))) PQR(主合取范式)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(原公式否定的主合取范式)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)1(PQ)(PR)解、(PQ)(PR)(PQ)(PR) (合取范式)(PQ(RR)(P()R)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主合取范式)(PQ)(PR)(PQ)(PR)P(QR)(合取范式)(P()(RR))((PP)QR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(主析取范式)三、證明:P→Q,QR,R,SP=S證明:(1) R 前提(2) QR 前提(3) Q (1),(2)(4) P→Q 前提(5) P (3),(4)(6) SP 前提(7) S (5),(6)A→(B→C),C→(DE),F(xiàn)→(DE),A=B→F證明: (1) A 前提(2) A→(B→C) 前提 (3) B→C (1),(2)(4) B 附加前提(5) C (3),(4)(6) C→(DE) 前提(7) DE (5),(6)(8) F→(DE) 前提(9) F (7),(8)(10) B→F CP PQ, P→R, Q→S = RS證明:(1) R 附加前提(2) P→R 前提(3) P (1),(2)(4) PQ 前提(5) Q (3),(4)(6) Q→S 前提(7) S (5),(6)(8) RS CP,(1),(8)(P→Q)(R→S),(Q→W)(S→X),(WX),P→R = P證明: (1) P 假設(shè)前提(2) P→R 前提(3) R (1),(2)(4) (P→Q)(R→S) 前提(5) P→Q (4)(6) R→S (5)(7) Q (1),(5)(8) S (3),(6)(9) (Q→W)(S→X) 前提(10) Q→W (9)(11) S→X (10)(12) W (7),(10)(13) X (8),(11)(14) WX (12),(13)(15) (WX) 前提(16) (WX)(WX) (14),(15)(UV)→(MN), UP, P→(QS),QS =M 證明:(1) QS 附加前提(2) P→(QS) 前提 (3) P (1),(2)(4) UP 前提(5) U (3),(4)(6) UV (5)(7) (UV)→(MN) 前提 (8) MN (6),(7)(9) M (8)BD,(E→F)→D,E=B證明:(1) B 附加前提(2) BD 前提 (3) D (1),(2)(4) (E→F)→D 前提(5) (E→F) (3),(4)(6) EF (5)(7) E (6)(8) E
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1