【摘要】一、羅爾定理二、拉格朗日中值定理四、小結(jié)思考題三、柯西中值定理第一節(jié)中值定理一、羅爾(Rolle)定理羅爾(Rolle)定理如果函數(shù))(xf在閉區(qū)間],[ba上連續(xù),在開區(qū)間),(ba內(nèi)可導,且在區(qū)間端點的函數(shù)值相等,即)()(bfaf?,那末在),(ba內(nèi)至少有一點)
2024-09-11 12:46
【摘要】拉格朗日中值定理引言眾所周至拉格朗日中值定理是幾個中值定理中最重要的一個,是微分學應用的橋梁,在高等數(shù)學的一些理論推導中起著很重要的作用.研究拉格朗日中值定理的證明方法,力求正確地理解和掌握它,是十分必要的.拉格朗日中值定理證明的關(guān)鍵在于引入適當?shù)妮o助函數(shù).實際上,能用來證明拉格朗日中值定理的輔助函數(shù)有無數(shù)個,因此如果以引入輔助函數(shù)的個數(shù)來計算,
2025-07-07 19:49
【摘要】[鍵入文字]西安交通工程學院《高等數(shù)學》教案1/7西安交通工程學院《高等數(shù)學》課程建設組時間-月-日星期-課題§微分中值定理教學目的理解并會用羅爾定理、拉格朗日定理,了解柯西中值定理。教學重點羅爾定理、拉格朗日定理的應用。教學難點羅爾定理、拉格朗日定理的應用。
2025-01-15 06:45
【摘要】一、羅爾(Rolle)定理二、拉格朗日(Lagrange)中值定理三、柯西(Cauchy)中值定理ab1?2?xyo)(xfy?C右圖,區(qū)間[a,b]上一條光滑曲線弧,且兩端點處的函數(shù)值相等,除區(qū)間端點外處處有不垂直于x軸的切線,在最高點和最低點處切線有何特點?觀察與思考:
2024-08-19 10:00
【摘要】中值定理洛必達法則函數(shù)的單調(diào)性與極值函數(shù)圖形的描繪導數(shù)在經(jīng)濟中的應用結(jié)束第3章中值定理、導數(shù)應用前頁結(jié)束后頁定理1設函數(shù)滿足下列條件)(xf)()(bfaf?(3)(1)在閉區(qū)間
2025-03-02 10:32
【摘要】微分中值定理證明中輔助函數(shù)的構(gòu)造1原函數(shù)法此法是將結(jié)論變形并向羅爾定理的結(jié)論靠攏,湊出適當?shù)脑瘮?shù)作為輔助函數(shù),主要思想分為四點:(1)將要證的結(jié)論中的換成;(2)通過恒等變形將結(jié)論化為易消除導數(shù)符號的形式;(3)用觀察法或積分法求出原函數(shù)(等式中不含導數(shù)符號),并取積分常數(shù)為零;(4)移項使等式一邊為零,另一邊即為所求輔助函數(shù).例1:證明柯西中值定理.分析:在柯西中值定理的結(jié)
2025-05-24 23:51
【摘要】中值定理一向是經(jīng)濟類數(shù)學考試的重點(當然理工類也常會考到),咪咪結(jié)合老陳的書和一些自己的想法做了以下這個總結(jié),希望能對各位研友有所幫助。1、所證式僅與ξ相關(guān)①觀察法與湊方法②原函數(shù)法③一階線性齊次方程解法的變形法2、所證式中出現(xiàn)兩端點①湊拉格朗日②柯西定理③k值法④泰勒公式法老陳常說的一句話,管它是什么,先泰勒展開再說。當定理感覺
2025-04-13 04:49
【摘要】富蘭克林Ifyouwouldnotbefotten,assoonasyouaredeadorrotten,eitherwritethingsworthreading,ordothingsworthwriting.——Benjamin.Franklin如果你不想在死后被人
2024-08-31 01:31
【摘要】樂山師范學院畢業(yè)論文(設計)本科生畢業(yè)論文(設計)系(院)數(shù)學與信息科學學院專業(yè)數(shù)學與應用數(shù)學論文題目微分中值定理及其應用學生姓名賈孫鵬指導教師黃寬娜(副教授)班級11級數(shù)應1班
2025-07-07 18:33
【摘要】微積分(一)calculus§微分中值定理§洛必達法則§用導數(shù)研究函數(shù)的單調(diào)性、極值、和最值§函數(shù)曲線的凹向及拐點§§第四章中值定理及導數(shù)的應用微積分(一)calculus§微分中值定理一、引言二、微分中值定
2025-01-29 05:32
【摘要】高等數(shù)學工科數(shù)學分析、常微分方程基礎、立體解析幾何第二章一元微分學微積分學的產(chǎn)生是科學史上最重大的成就之一。其實早在公元前五世紀,從安蒂豐建立所謂的窮竭法,經(jīng)過歐多克索斯(公元前四世紀),到阿基米德(公元前三世紀)的探索和發(fā)展,積分學就曾以另外一種面貌,局部的出現(xiàn)過(它比導數(shù)思想的出現(xiàn)早得多,當
2024-10-25 06:30
【摘要】第五講中值定理的證明技巧一、考試要求1、理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理,有界性定理,介值定理),并會應用這些性質(zhì)。2、理解并會用羅爾定理、拉格朗日中值定理、泰勒定理,了解并會用柯西中值定理。掌握這四個定理的簡單應用(經(jīng)濟)。3、了解定積分中值定理。二、內(nèi)容提要1、介值定理(根的存在性定理)(1)介值定理在閉區(qū)間上連續(xù)
2025-06-28 00:08
【摘要】目錄上頁下頁返回結(jié)束二、導數(shù)應用習題課一、微分中值定理及其應用中值定理及導數(shù)的應用第三章目錄上頁下頁返回結(jié)束造技巧:注:常見的一些函數(shù)構(gòu)????)()(),(1ffba?????使)證(xxfxF)()(??0)()(),(2????
2025-08-04 00:45
【摘要】引言通過對數(shù)學分析的學習我們知道,微分學在數(shù)學分析中具有舉足輕重的地位,它是組成數(shù)學分析的不可缺失的部分。對于整塊微分學的學習,我們可以知道中值定理在它的所有定理里面是最基本的定理,也是構(gòu)成它理論基礎知識的一塊非常重要的內(nèi)容。由此可知,對于深入的了解微分中值定理,可以讓我們更好的學好數(shù)學分析。通過對微分中值定理的研究,我們可以得到它不僅揭示了函數(shù)整體與局部的關(guān)系,而且也是
2025-07-03 22:55
【摘要】《高等數(shù)學》Ⅱ—Ⅰ課程教案第三章微分中值定理與導數(shù)的應用本章內(nèi)容是上一章的延續(xù),主要是利用導數(shù)與微分這一方法來分析和研究函數(shù)的性質(zhì)及其圖形和各種形態(tài),這一切的理論基礎即為在微分學中占有重要地位的幾個微分中值定理。在分析、論證過程中,中值定理有著廣泛的應用。一、教學目標與基本要求(一)知識、拉格朗日中值定理、柯西中值定理的條件和結(jié)論;;,sin(x),cos(
2025-07-03 23:00