【摘要】如何復(fù)習線形代數(shù)線性代數(shù)這門課的特點主要有兩個:一是試題的計算量偏大,無論是行列式、矩陣、線性方程組的求解,還是特征值、特征向量和二次型的討論都涉及到大量的數(shù)值運算,稍有不慎,即會出錯;二是前后內(nèi)容緊密相連,縱橫交織,既相對獨立又密不可分,形成了一個完整、獨特的知識體系.在掌握好基本概念、基本原理和基本方法的前提下,下面談?wù)勗趶?fù)習過程中應(yīng)注意的一些問題.一、加強計算能力訓練,切
2025-08-16 11:03
【摘要】線性代數(shù)教材:鄭寶東主編.線性代數(shù)與空間解析幾何.高等教育出版社,北京,2022參考書:[1]同濟大學數(shù)學教研室編.線性代數(shù)(第六版).高等教育出版社.2022年[2]趙連偶,劉曉東.線性代數(shù)與幾何(面向21世紀課程教材).高等教育出版社[3]居余馬等.線性代數(shù).清華大學出版社第一章n階行列式
2025-08-14 16:28
【摘要】線性代數(shù)2022/3/131線性代數(shù)主要參考書:同濟大學《線性代數(shù)》北京大學《高等代數(shù)》線性代數(shù)2022/3/132線性代數(shù)2022/3/133線性代數(shù)的主要研究內(nèi)容:1.線性方程組求解;2.求二次型的最簡型。主要研究工具:1.行列式;2.矩陣;3.
2025-02-28 03:59
【摘要】行列式二階行列式的運算???????.,222111cybxacybxa,12211221bababcbcx???,12211221babacacay???用加減消元法解方程組得)0(1221??baba,DDxx?,DDyy??
2025-05-24 14:27
【摘要】571上次課復(fù)習一、行列式的性質(zhì)及其推論性質(zhì)1行列式轉(zhuǎn)置,其值不變.571266853266853?根據(jù)性質(zhì)1,行所具有的性質(zhì)列也同樣具有.交換行列式的兩行,其值變號.(列)性質(zhì)2推論如果行列式中有兩行(列)對應(yīng)元素相同,則此行列式為零.性質(zhì)3用數(shù)
2025-05-08 06:43
【摘要】,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa??????333231232221131211aaaaaaaaa例如??3223332211aaaaa????3321312312aaaaa????3122322113aaaaa??33312321
2025-05-22 10:27
【摘要】1第二章行列式2?行列式的概念?n階行列式的定義?行列式的性質(zhì)?行列式按行(列)展開定理?行列式的計算?再論可逆矩陣3二元線性方程組的求解(消元法).a11x1+a12x2=b1a21x1+a22x2=b2(1)(2)§1行列式的概念
2025-01-28 15:07
【摘要】1五.行列式按行(列)展開對于三階行列式,容易驗證:333231232221131211aaaaaaaaa333123211333312321123332232211aaaaaaaaaaaaaaa???可見一個三階行列式可以轉(zhuǎn)化成三個二階行列式的計算。問題:一個n階行列式是
2025-05-16 00:52
【摘要】第三章行列式?第一節(jié)線性方程組與行列式?第二節(jié)排列?第三節(jié)n階行列式?第四節(jié)余子式與行列式展開?第五節(jié)克萊姆規(guī)則第一節(jié)線性方程組與行列式?一.初等代數(shù)回顧?1.二階行列式與二元一次方程組?2.三階行列式與三元一次方程組?二.線性方程組?三.后續(xù)內(nèi)容介紹二
2025-07-29 16:56
【摘要】第二章行列式行列式的概念n階行列式的定義行列式的性質(zhì)行列式按行(列)展開行列式的計算行列式——determinant行列式的概念令11112211212222(2.1)axaxbaxaxb???
2025-02-28 05:11
【摘要】二階行列式三階行列式小結(jié)思考題?從分析用消元法解二元線性方程組入手?給出二階、三階行列式定義及計算第一節(jié)二階與三階行列式機動目錄上頁下頁返回結(jié)束用消元法解二元線性方程組???????.,22221211212111
2025-05-13 18:02
【摘要】第1章行列式行列式是線性代數(shù)的一個重要組成部分.它是研究矩陣、線性方程組、特征多項式的重要工具.本章介紹了n階行列式的定義、性質(zhì)及計算方法,最后給出了它的一個簡單應(yīng)用——克萊姆法則.2第1章行列式?n階行列式的定義?行列式的性質(zhì)?行列式按行(列)展開?克萊姆法則—行列式的一
2025-05-14 12:01
【摘要】EXCEL的矩陣運算例:x=(ATA)-1ATb已知資料(結(jié)果)位置選擇『函數(shù)類別』及『函數(shù)名稱』(可利用『說明』來查“MMULT”的詳細用法),輸入“TRANSPOSE(“因為AT是一反矩陣,必須先用反矩陣功能轉(zhuǎn)換,以選擇矩陣範圍(也可以直接輸入)。.A範圍
2025-08-14 08:58
【摘要】行列式與矩陣n階行列式的概念行列式的性質(zhì)與計算Cramer法則第六章矩陣及其計算逆矩陣與矩陣的秩分塊矩陣矩陣的初等變換n階行列式第一節(jié)學習重點余子式與代數(shù)余子式的概念n階行列式的概念●行列式的引入引
2024-10-25 21:34
【摘要】幾何與代數(shù)主講:關(guān)秀翠東南大學數(shù)學系我想說?課程的重要性?大學與中學的區(qū)別?綜合考評?自主學習?如何學好?做好預(yù)習復(fù)習?多看多練多想?工科基礎(chǔ)?考研基礎(chǔ)?期末成績占90%?平時成績占5%?分配時間?學習方法?數(shù)學試驗占5%未來的文盲不再是目不識丁的人,
2025-05-24 07:51