【摘要】第一節(jié)貝葉斯推斷方法第二節(jié)貝葉斯決策方法第十一章貝葉斯估計第一節(jié)貝葉斯推斷方法一、統(tǒng)計推斷中可用的三種信息美籍波蘭統(tǒng)計學(xué)家耐曼(-1981)高度概括了在統(tǒng)計推斷中可用的三種信息:1.總體信息,即總體分布或所屬分布族給我們的信息。譬如“總體視察指數(shù)分布”或“總體
2025-03-04 15:16
【摘要】參數(shù)估計2/8/2023第1頁1、統(tǒng)計決策?一、統(tǒng)計決策的三個要素1樣本空間和分布族設(shè)總體X的分布函數(shù)為F(x。?),?是未知參數(shù),若設(shè)X1,…,Xn是來自總體X的一個樣本,則樣本所有可能值組成的集合稱為樣本空間,記為X參數(shù)估計2/8/2023第2頁2決策
2025-01-28 07:36
【摘要】貝葉斯決策論和參數(shù)估計孟濤2022年4月11日提綱?貝葉斯決策論?最小誤差率分類?分類器、判別函數(shù)及判定面?正態(tài)密度和判別函數(shù)?貝葉斯置信網(wǎng)?最大似然估計?貝葉斯估計貝葉斯決策論?貝葉斯公式?貝葉斯公式的意義?判定的誤差概率?平均誤差概率?四
2024-08-19 07:04
2025-02-23 01:22
【摘要】貝葉斯估計BayesEstimation數(shù)理統(tǒng)計課題組例子:?某人打靶,打了5槍,槍槍中靶,?問:此人槍法如何??某人打靶,打了500槍,槍槍中靶,?問:此人槍法如何??經(jīng)典方法:極大似然估計:100%?但是:……幾個學(xué)派(1)?經(jīng)典學(xué)派:頻率學(xué)派,抽樣學(xué)派?帶頭
2025-08-02 08:52
2024-08-19 10:26
【摘要】第七節(jié)貝葉斯公式全概率公式和貝葉斯公式主要用于計算比較復(fù)雜事件的概率,它們實(shí)質(zhì)上是加法公式和乘法公式的綜合運(yùn)用.綜合運(yùn)用加法公式P(A+B)=P(A)+P(B)A、B互斥乘法公式P(AB)=P(A)P(B|A)P(A)0例1有三個箱子,分別編號為1,
2024-08-30 23:46
【摘要】貝葉斯網(wǎng)絡(luò)初步內(nèi)容提綱?何謂貝葉斯網(wǎng)絡(luò)??貝葉斯網(wǎng)絡(luò)的語義?條件分布的有效表達(dá)?貝葉斯網(wǎng)絡(luò)中的精確推理?貝葉斯網(wǎng)絡(luò)中的近似推理?課后習(xí)題、編程實(shí)現(xiàn)及研讀論文何謂貝葉斯網(wǎng)絡(luò)?A.貝葉斯網(wǎng)絡(luò)的由來B.貝葉斯網(wǎng)絡(luò)的定義C.貝葉斯網(wǎng)絡(luò)的別名D.獨(dú)立和條件獨(dú)立E.貝葉斯網(wǎng)絡(luò)示例
2024-10-10 09:50
【摘要】MCMC方法??一、貝葉斯統(tǒng)計的框架分析困難:后驗(yàn)分布是復(fù)雜的、高維的分布解決方法:馬爾可夫鏈蒙特卡羅(MCMC)方法后驗(yàn)分布先驗(yàn)信息似然函數(shù)?目前,MCMC已經(jīng)成為一種處理復(fù)雜統(tǒng)計問題的特別流行的工具,尤其在經(jīng)常需要復(fù)雜的高維積分運(yùn)算的貝葉斯分析領(lǐng)域更是如此。在那里,高
2025-01-28 09:54
【摘要】貝葉斯估計及其在抽樣調(diào)查中的應(yīng)用2(Bayes,Thomas)(1702─1761)貝葉斯是英國數(shù)學(xué)家.1702年生于倫敦;1761年4月17日卒于坦布里奇韋爾斯.貝葉斯是一位自學(xué)成才的數(shù)學(xué)家.曾助理宗教事務(wù),后來長期擔(dān)任坦布里奇韋爾斯地方教堂的牧師.1742年,貝葉斯被選為英
2025-03-05 04:54
【摘要】第五章貝葉斯決策?在前一章中,我們把人與自然界(或社會)的博弈問題歸納為決策問題,它包含三個要素:狀態(tài)集;行動集;損失函數(shù)。?至今為止,可供決策的信息有:先驗(yàn)信息;試驗(yàn)信息或抽樣信息,其中的關(guān)鍵就是要確定一個可觀察的隨機(jī)變量X,其概率分布中恰好把它當(dāng)作未知參數(shù)。?對上述兩種信息的使用情況,形成不同的決策問題。(
2025-05-16 01:38
2025-03-05 04:53
【摘要】正態(tài)模型刻度參數(shù)的經(jīng)驗(yàn)貝葉斯估計劉榮玄朱少平(井岡山學(xué)院數(shù)理學(xué)院江西吉安343009)摘要:依據(jù)經(jīng)驗(yàn)貝葉斯估計的思想,研究在平方損失函數(shù)下,正態(tài)模型單參數(shù)的經(jīng)驗(yàn)貝葉斯(EB)估計問題.先將理論貝葉斯估計用的邊際分布密度函數(shù)及該分布密度函數(shù)的一階導(dǎo)數(shù)表示出來,再利用過去樣本值和當(dāng)前值,采用密度函數(shù)的核估計方法構(gòu)造相應(yīng)的函數(shù),代替理論貝葉斯估計中的函數(shù),得到參數(shù)的經(jīng)
2024-08-19 17:37
【摘要】1ArtificialIntelligence:BayesianNetworks2GraphicalModels?Ifnoassumptionofindependenceismade,thenanexponentialnumberofparametersmustbeestimatedforsoundprobabil
2025-08-02 21:55
【摘要】樸素貝葉斯分類、摘要??????貝葉斯分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎(chǔ),故統(tǒng)稱為貝葉斯分類。本文作為分類算法的第一篇,將首先介紹分類問題,對分類問題進(jìn)行一個正式的定義。然后,介紹貝葉斯分類算法的基礎(chǔ)——貝葉斯定理。最后,通過實(shí)例討論貝葉斯分類中最簡單的一種:樸素貝葉斯分類。、分類問題綜述
2025-04-17 23:55