【摘要】1、二面角及二面角的平面角的有關(guān)定義平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個(gè)半平面。從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。(1)半平面(2)二面角lαlα這條直線叫做二面角的棱,每個(gè)半平面叫做二面角的面。αβBOAa
2024-11-21 23:31
【摘要】高二數(shù)學(xué)課件:制作:余干二中章華鋒二面角和面面垂直二面角和面面垂直教學(xué)目標(biāo):掌握判定定理,并會(huì)應(yīng)用培養(yǎng)空間想象能力,推理能力教學(xué)難點(diǎn):判定定理及其綜合應(yīng)用1、問題:一條直線可以把一個(gè)平面分成多少部分?每一部分都叫做半平面2部分2、觀察一下從一條直線出發(fā)的兩個(gè)半平面所組成的的圖形叫二面角.
2024-11-21 01:26
【摘要】直線上的一點(diǎn)將直線分割成兩部分,每一部分都叫做射線.射線射線平面內(nèi)的一條直線,把這個(gè)平面分成兩部分,每一部分都叫做半平面。思考:平面上的一條直線將平面分割成兩部分,每一部分叫什么名稱?αl從一條直線出發(fā)的兩個(gè)半平面所組成的空間圖形稱為什么?在平面幾何中“角”是怎樣定義的?答:從平面內(nèi)一點(diǎn)出發(fā)的兩條
2024-08-20 00:06
【摘要】第四講空間向量一、定義:(1)已知,則(2)已知,則;;(3)數(shù)量積:注:;;(4)應(yīng)用:已知=二、空間向量解決空間立體幾何問題:1、位置關(guān)系判定:(1)線線平行:線線垂直:(2)線面平行:(其中為平面的法向量)線面垂直:(3)面面平行:面面垂直:2、求夾角:(1)線線角:,其中(2)線面角:,其中(3)二
2025-04-03 06:42
【摘要】βabABCD設(shè)異面直線a、b的夾角為θcosθ=??AB,CDcos||=AB·CD·AB||CD||θ=??AB,CD或θ=π-?
2025-05-26 22:58
【摘要】退出平面與平面垂直的判定定理和性質(zhì)定理(一)判定定理性質(zhì)定理課后思考應(yīng)用作業(yè)小結(jié)引入建筑工人砌墻時(shí),常用一端系有鉛錘的線來檢查所砌的墻面是否和地面垂直,如果系有鉛錘的線和墻面緊貼,問題引入引入那么所砌的墻面與地面垂直。大家知道其中的理論根據(jù)嗎?退出平面與平面垂直
2024-11-21 08:11
【摘要】一、作點(diǎn)在面上的射影(作垂線)1、已知矩形中,,,將矩形沿對(duì)角線把折起,使移到點(diǎn),且在平面上的射影恰好在上.(Ⅰ)求證:;(Ⅱ)求證:平面平面;(Ⅲ)求二面角的余弦值.2、在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求證:BD⊥
2025-04-02 12:12
【摘要】1上杭縣高級(jí)中學(xué)講課人:周文才時(shí)間:07年12月14日2345678所以:解:以點(diǎn)C為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系如圖所示,設(shè)則C||所以與所成角的余弦值為9設(shè)平面xyz點(diǎn)評(píng):找到
2024-11-24 16:42
【摘要】第九章直線、平面、簡(jiǎn)單幾何體懷化鐵路第一中學(xué)二面角(4)——二面角習(xí)題課第九章直線、平面、簡(jiǎn)單幾何體懷化鐵路第一中學(xué)一、朝花夕拾二、兩個(gè)平面垂直的判定定理三、兩個(gè)平面垂直的性質(zhì)定理一、兩個(gè)平面垂直的定義相交成直二面角的兩個(gè)平面,叫做互相垂直的平面CDB
2024-11-18 15:28
【摘要】二面角仔細(xì)觀察慎重思考認(rèn)真解答開拓創(chuàng)新注意積累勇于探索知識(shí)再現(xiàn)什么是二面角?由兩個(gè)半平面圍成的幾何圖形ιβα敘述二面角平面角的形成過程ιPBAβα在平面α和平面β的交線ι上任取一點(diǎn)P在平面α內(nèi)
2024-11-12 16:40
【摘要】第一篇:第四節(jié)利用空間向量求二面角及證明面面垂直 第四節(jié)利用空間向量求二面角及證明面面垂直一、二面角 二面角a-l-b,若a的一個(gè)法向量為m,b的一個(gè)法向量為n,則cos,=,二面角的大小為...
2024-11-06 12:02
【摘要】三三得九數(shù)學(xué)網(wǎng)網(wǎng)址:從一條直線出發(fā)的兩個(gè)半平面所形成的圖形叫做二面角這條直線叫做二面角的棱從一條直線出發(fā)的兩個(gè)半平面所形成的圖形叫做二面角這條直線叫做二面角的棱二面角的平面角二面角的平面角以二面角的棱上任意一點(diǎn)為端點(diǎn),以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條
2025-01-16 23:07
【摘要】??????復(fù)習(xí)回顧"角"是怎樣定義的?從一點(diǎn)出發(fā)的兩條射線所組成的圖形叫做角?;?一條射線繞其端點(diǎn)旋轉(zhuǎn)而成的圖形叫做角。,"異面直線所成的角"是怎樣定義的?直線a、b是異面直線,經(jīng)過空間任意一點(diǎn)O,分別引直線a'//a,b'//b,我們把相
2024-08-20 18:18
【摘要】利用線面角和二面角本質(zhì)解題沈勤龍某天聽了一節(jié)高三某老師的試卷講評(píng)課,很有收獲。覺得應(yīng)該寫出來與各位分享,并希望各位不斷提醒自己,在學(xué)習(xí)數(shù)學(xué)的過程中,應(yīng)不斷思考,不斷追求本質(zhì)。首先,我們要認(rèn)識(shí)線面角和二面角的兩個(gè)本質(zhì)(不作展開,自行理解或證明):本質(zhì)1:一條斜線與已知平面中的任一條直線所成的角中,線面角最小。本質(zhì)2:對(duì)于一個(gè)銳二面角,在其中一個(gè)半平面中的任一條直線與另一個(gè)半平面
2025-04-02 12:45
【摘要】毛洪清一、直線的方向向量定義直線L上的向量以及與向量共線的向量叫直線L的方向向量.?例:直線L過點(diǎn)P(-2,3,1),Q(1,0,-1),則直線L的一個(gè)方向向量為______ee(3,-3,-2)答案:L二、平面的法向量定義如果表示非零向量的有向線段所在
2024-11-24 17:26