【摘要】摘要微分方程是表達自然規(guī)律的一種自然的數(shù)學語言。它從生產(chǎn)實踐與科學技術(shù)中產(chǎn)生,而又成為現(xiàn)代科學技術(shù)中分析問題與解決問題的一個強有力的工具。人們在探求物質(zhì)世界某些規(guī)律的過程中,一般很難完全依靠實驗觀測認識到該規(guī)律,反而是依照某種規(guī)律存在的聯(lián)系常常容易被我們捕捉到,而這種規(guī)律用數(shù)學語言表達出來,其結(jié)果往往形成一個微分方程,而一旦求出方程的解,其規(guī)律則一目了然。所以我們必須能夠
2025-07-01 12:29
【摘要】本科畢業(yè)論文二階常微分方程的解法及其應用畢業(yè)論文(設計)原創(chuàng)性聲明本人所呈交的畢業(yè)論文(設計)是我在導師的指導下進行的研究工作及取得的研究成果。據(jù)我所知,除文中已經(jīng)注明引用的內(nèi)容外,本論文(設計)不包含其他個人已經(jīng)發(fā)表或撰寫過的研究成果。對本論文(設計)的研究做出重要貢獻的個人和集體,均已在文中作了明確說明并表示謝意。
2025-06-27 12:44
【摘要】本科畢業(yè)論文二階常微分方程的解法及其應用畢業(yè)論文(設計)原創(chuàng)性聲明本人所呈交的畢業(yè)論文(設計)是我在導師的指導下進行的研究工作及取得的研究成果。據(jù)我所知,除文中已經(jīng)注明引用的內(nèi)容外,本論文(設
2024-09-06 17:40
【摘要】第九章常微分方程的數(shù)值解法§1、引言§2、初值問題的數(shù)值解法單步法§3、龍格-庫塔方法§4、收斂性與穩(wěn)定性§5、初值問題的數(shù)值解法―多步法§6、方程組和剛性方程§7、習題和總結(jié)主要內(nèi)容主
2024-08-19 15:59
【摘要】第九章常微分方程的數(shù)值解法 在自然科學的許多領域中,都會遇到常微分方程的求解問題。然而,我們知道,只有少數(shù)十分簡單的微分方程能夠用初等方法求得它們的解,多數(shù)情形只能利用近似方法求解。在常微分方程課中已經(jīng)講過的級數(shù)解法,逐步逼近法等就是近似解法。這些方法可以給出解的近似表達式,通常稱為近似解析方法。還有一類近似方法稱為數(shù)值方法,它可以給出解在一些離散點上的近似值。利用計算機解微分方程主要
2024-09-06 20:43
【摘要】331§9.4二階常系數(shù)線性微分方程二階常系數(shù)線性微分方程的一般形式為)(xfqyypy??????其中qp和是實常數(shù),)(xf是已知函數(shù)。當0)(?xf時,形式為0??????qyypy稱為二階常系數(shù)線性齊次微分方程。例如034??????yy如果
2025-01-29 04:56
【摘要】常微分方程的高精度求解方法安徽大學江淮學院07計算機(1)班安徽大學江淮學院本科畢業(yè)論文(設計)題目:常微分方程求解的高階方法學生姓名:圣近學號:JB074219院(系):計算機科學與技術(shù)專業(yè):計算
2025-06-15 12:01
【摘要】二階常微分方程邊值問題的數(shù)值解法摘要求解微分方程數(shù)值解的方法是多種多樣的,它本身已形成一個獨立的研究方向,其要點是對微分方程定解問題進行離散化.本文以研究二階常微分方程邊值問題的數(shù)值解法為目標,綜合所學相關(guān)知識和二階常微分方程的相關(guān)理論,通過對此類方程的數(shù)值解法的研究,系統(tǒng)的復習并進一步加深對二階常微分方成的數(shù)值解法的理解,為下一步更加深入的學習和研究奠定基礎.
【摘要】常微分方程的積分因子求解法內(nèi)容摘要:本文給出了幾類特殊形式的積分因子的求解方法,并推廣到較一般的形式。關(guān)鍵詞:全微分方程,積分因子。一、基本知識對于形如()的微分方程,如果方程的左端恰是,的一個可微函數(shù)的全微分,即=,則稱()為全微分方程.易知,上述全微分方程的通解為
2025-07-01 20:24
【摘要】1二階常微分方程邊值問題的數(shù)值解法摘要求解微分方程數(shù)值解的方法是多種多樣的,它本身已形成一個獨立的研究方向,其要點是對微分方程定解問題進行離散化.本文以研究二階常微分方程邊值問題的數(shù)值解法為目標,綜合所學相關(guān)知識和二階常微分方程的相關(guān)理論,通過對此類方程的數(shù)值解法的研究,系統(tǒng)的復習并進一步加深對二階常微分方成的數(shù)值解法的理解,
2025-03-16 10:47
【摘要】目錄上頁下頁返回結(jié)束微分方程課程的一個主要問題是求解,即把微分方程的解通過初等函數(shù)或它們的積分表達出來,但對一般的微分方程是無法求解的,如對一般的二元函數(shù)),(yxf,我們無法求出一階微分方程),(yxfy??(1)的解,但是對某些特殊類型的方程,我們可設法轉(zhuǎn)化為已解決的問題第二章
2024-12-17 09:04
【摘要】目錄上頁下頁返回結(jié)束§一階隱式微分方程一階顯式微分方程),(yxfy??一階隱式微分方程0),,(??yyxF()能從上式中解出,y?就可以化成顯式方程。例1求解微分方程.0)()(2????xydxdyyxdxdy目錄上頁下頁返回
2024-10-28 17:11
【摘要】目錄上頁下頁返回結(jié)束一、一階微分方程求解1.一階標準類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階非標準類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個標準類型
【摘要】提供全套,各專業(yè)畢業(yè)設計目錄摘要……………………………………………………………………………………………1關(guān)鍵詞…………………………………………………………………………………………1Abstract………………………………………………………………………………………1Keywords……………………………………………………………………………
2025-06-14 00:02
【摘要】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當時,得到,兩邊積分即可得到結(jié)果;當時,則也是方程的解。、解:當時,有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當時,可有,兩邊積分可得結(jié)果;當時,為原方程的解,當時,為原方程的解。、解:當時,有兩邊積分
2025-07-04 01:32