freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

概率論與數(shù)理統(tǒng)計(jì)課后習(xí)題答案下-展示頁

2025-07-03 20:46本頁面
  

【正文】 從而同理而 所以.從而 (X,Y)的概率密度為f(x,y)=求協(xié)方差Cov(X,Y)和相關(guān)系數(shù)ρXY.【解】 從而同理 又 故 (X,Y)的協(xié)方差矩陣為,試求Z1=X 2Y和Z2=2X Y的相關(guān)系數(shù).【解】由已知知:D(X)=1,D(Y)=4,Cov(X,Y)=1.從而 故 ,W,若E(V2),E(W2)存在,證明:[E(VW)]2≤E(V2)E(W2).這一不等式稱為柯西許瓦茲(Couchy Schwarz)不等式.【證】令顯然 可見此關(guān)于t的二次式非負(fù),故其判別式Δ≤0,即 故=1/,出現(xiàn)故障時(shí)自動關(guān)機(jī),(y). 【解】設(shè)Y表示每次開機(jī)后無故障的工作時(shí)間,由題設(shè)知設(shè)備首次發(fā)生故障的等待時(shí)間X~E(λ),E(X)==5.依題意Y=min(X,2).對于y0,f(y)=P{Y≤y}=0.對于y≥2,F(y)=P(X≤y)=1.對于0≤y2,當(dāng)x≥0時(shí),在(0,x)內(nèi)無故障的概率分布為P{X≤x}=1 e λx,所以F(y)=P{Y≤y}=P{min(X,2)≤y}=P{X≤y}=1 e y/5.、乙兩箱中裝有同種產(chǎn)品,其中甲箱中裝有3件合格品和3件次品,求:(1)乙箱中次品件數(shù)Z的數(shù)學(xué)期望;(2)從乙箱中任取一件產(chǎn)品是次品的概率. 【解】(1) Z的可能取值為0,1,2,3,Z的概率分布為, Z=k0123Pk因此,(2) 設(shè)A表示事件“從乙箱中任取出一件產(chǎn)品是次品”,根據(jù)全概率公式有 (毫米)服從正態(tài)分布N(μ,1),內(nèi)徑小于10或大于12為不合格品,銷售每件不合格品虧損,已知銷售利潤T(單位:元)與銷售零件的內(nèi)徑X有如下關(guān)系T=問:平均直徑μ取何值時(shí),銷售一個(gè)零件的平均利潤最大? 【解】 故得 兩邊取對數(shù)有解得 (毫米)由此可得,當(dāng)u=,平均利潤最大.f(x)=對X獨(dú)立地重復(fù)觀察4次,用Y表示觀察值大于π/3的次數(shù),求Y2的數(shù)學(xué)期望.(2002研考)【解】令 及,所以,從而,每臺無故障工作的時(shí)間Ti(i=1,2)服從參數(shù)為5的指數(shù)分布,首先開動其中一臺,=T1+T2的概率密度fT(t),數(shù)學(xué)期望E(T)及方差D(T). 【解】由題意知:因T1,T2獨(dú)立,所以fT(t)=f1(t)*f2(t).當(dāng)t0時(shí),fT(t)=0。(2) E(X)。μ1′,μ2′,…,μn′均服從兩點(diǎn)分布(參數(shù)為p),則X=μ1+μ2+…+μn,Y=μ1′+μ2′+…+μn′,X+Y=μ1+μ2+…+μn+μ1′+μ2′+…+μn′,所以,X+Y服從參數(shù)為(2n,p)的二項(xiàng)分布.(X,Y)的分布律為XY0 1 2 3 4 501230 (1) 求P{X=2|Y=2},P{Y=3|X=0};(2) 求V=max(X,Y)的分布律;(3) 求U=min(X,Y)的分布律;(4) 求W=X+Y的分布律.【解】(1) (2) 所以V的分布律為V=max(X,Y)012345P0(3) 于是U=min(X,Y)0123P(4)類似上述過程,有W=X+Y012345678P0,設(shè)目標(biāo)出現(xiàn)點(diǎn)(X,Y)在屏幕上服從均勻分布.(1) 求P{Y>0|Y>X};(2) 設(shè)M=max{X,Y},求P{M>0}.題20圖【解】因(X,Y)的聯(lián)合概率密度為(1) (2) =1/x及直線y=0,x=1,x=e2所圍成,二維隨機(jī)變量(X,Y)在區(qū)域D上服從均勻分布,求(X,Y)關(guān)于X的邊緣概率密度在x=2處的值為多少?題21圖【解】區(qū)域D的面積為 (X,Y)的聯(lián)合密度函數(shù)為(X,Y)關(guān)于X的邊緣密度函數(shù)為所以,下表列出了二維隨機(jī)變量(X,Y). XYy1 y2 y3P{X=xi}=pix1x21/81/8P{Y=yj}=pj1/61【解】因,故從而而X與Y獨(dú)立,故,從而即: 又即從而同理 又,故.同理從而故YX1(λ0)的泊松分布,每位乘客在中途下車的概率為p(0p1),且中途下車與否相互獨(dú)立,以Y表示在中途下車的人數(shù),求:(1)在發(fā)車時(shí)有n個(gè)乘客的條件下,中途有m人下車的概率;(2)二維隨機(jī)變量(X,Y)的概率分布.【解】(1) .(2) ,其中X的概率分布為X~,而Y的概率密度為f(y),求隨機(jī)變量U=X+Y的概率密度g(u). 【解】設(shè)F(y)是Y的分布函數(shù),則由全概率公式,知U=X+Y的分布函數(shù)為 由于X和Y獨(dú)立,可見 由此,得U的概率密度為 25. 25. 設(shè)隨機(jī)變量X與Y相互獨(dú)立,且均服從區(qū)間[0,3]上的均勻分布,求P{max{X,Y}≤1}.解:因?yàn)殡S即變量服從[0,3]上的均勻分布,于是有 因?yàn)閄,Y相互獨(dú)立,所以推得 .26. 設(shè)二維隨機(jī)變量(X,Y)的概率分布為XY 1 0 1 101a 0 b 0 c其中a,b,c為常數(shù),且X的數(shù)學(xué)期望E(X)= ,P{Y≤0|X≤0}=,記Z=X+:(1) a,b,c的值;(2) Z的概率分布;(3) P{X=Z}. 解 (1) 由概率分布的性質(zhì)知,a+b+c+=1 即 a+b+c = .由,可得.再由 ,得 .解以上關(guān)于a,b,c的三個(gè)方程得.(2) Z的可能取值為2,1,0,1,2,,,即Z的概率分布為
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1