【摘要】第一章勾股定理探索勾股定理第2課時勾股定理的驗證及簡單應(yīng)用◎新知梳理1.勾股定理的驗證:如圖甲是任意一個Rt△ABC,它的兩條直角邊的邊長分別為a,b,斜邊長為c.如圖乙、丙那樣分別取四個與Rt△ABC全等的三角形,放在邊長為(a+b)的正方形內(nèi).(1)圖乙和圖丙中①
2025-06-28 22:21
【摘要】第一頁,編輯于星期六:二點三十四分。,,,第二頁,編輯于星期六:二點三十四分。,第三頁,編輯于星期六:二點三十四分。,,第四頁,編輯于星期六:二點三十四分。,,,,第五頁,編輯于星期六:二點三十四分。...
2024-10-23 00:30
【摘要】第一章第一章勾股定理勾股定理八年級數(shù)學(xué)北師大版·上冊探索勾股定理(第2課時)一、新課引入一、新課引入如圖,分別以直角三角形的三條邊為邊長向外作正方形,你能利用這個圖說明勾股定理的正確性嗎?一、新課引入一、新課引入方法一:方法二:“割”“補(bǔ)”分割為四個直角三角形和一個小正方形.補(bǔ)成大正方形,用大正方形的面積減
2025-06-30 05:34
【摘要】初中數(shù)學(xué)(北師大版)八年級上冊第一章 勾股定理1 探索勾股定理知識點一????勾股定理的探索 探索勾股定理的方法?1 探索勾股定理例1 如圖1-1-1,在直角三角形外部作出3個正方形.設(shè)小方格的邊長為1,完成下列問題.圖1-1-1(1)正方形A中含有 ??
2025-06-21 12:45
2025-06-26 19:53
【摘要】第一章勾股定理1探索勾股定理第2課時驗證勾股定理及其簡單應(yīng)用第一章勾股定理A知識要點分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.已知:如圖1-1-7,用四塊兩直角邊長分別為a,b,斜邊長為c的直角三角形拼成一個正方形,求圖形中央的小正方形的面積.解法(1)
2025-06-28 12:14
2025-06-24 07:22
【摘要】第一章勾股定理1探索勾股定理2022秋季數(shù)學(xué)八年級上冊?B認(rèn)識勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2025-06-29 20:23
【摘要】第一章勾股定理勾股定理的應(yīng)用◎新知梳理1.在運用勾股定理解決數(shù)學(xué)問題中,首先應(yīng)構(gòu)造直角三角形,再利用已知兩邊的長求第三邊;或已知其中的一邊,及其中兩邊的數(shù)量關(guān)系,通過建立方程求出這兩邊的長度.2.如圖,若圓柱的底面周長是40cm,高是30cm,從圓柱底部A處沿側(cè)面纏繞一圈絲線到頂部B處做裝飾,求這條
2025-06-30 12:20
【摘要】初中數(shù)學(xué)(北師大版)八年級上冊第一章勾股定理知識點一圓柱側(cè)面上兩點間的最短距離圓柱側(cè)面的展開圖是一個長方形.圓柱側(cè)面上兩點之間最短距離的求法是把圓柱側(cè)面展開成平面圖形,依據(jù)兩點之間線段最短,以最短路線為斜邊構(gòu)造直角三角形,利用勾股定理求解.3勾股定理的應(yīng)用例1如圖1-3-1所示,一個圓
2025-06-29 13:04
2025-06-28 22:14
【摘要】3勾股定理的應(yīng)用,構(gòu)造三角形,碰到空間曲面上兩點間的最短距離問題,一般是化空間問題為問題來解決,它的理論依據(jù)是“兩點之間,最短”.,在圓柱的軸截面ABCD中,AB=,BC=12,動點P從點A出發(fā),沿著圓柱的側(cè)面移動到BC的中點S的最短距離為()1
2025-06-28 12:21
【摘要】八年級數(shù)學(xué)北師大版·上冊第一章第一章勾股定理勾股定理勾股定理的應(yīng)用如圖所示,有一個圓柱,它的高等于12cm,底面上圓的周長等于18cm.在圓柱下底面的點A有一只螞蟻,它想吃到上底面上與點A相對的點B處的食物,沿圓柱側(cè)面爬行的最短路程是多少?(1)自己做一個圓柱,嘗試從點A到點B沿圓柱側(cè)面畫出幾條路線,你覺得哪條路線最
2025-06-28 12:11
【摘要】第一章勾股定理一定是直角三角形嗎◎新知梳理1.在△ABC中,設(shè)∠A,∠B,∠C的對邊分別為a,b,c,若a2+b2=c2,則△ABC是______三角形,且______為90°.直角∠C2.在△ABC中,設(shè)∠A,