【摘要】第三節(jié)全等三角形考點一全等三角形的判定(5年1考)例1如圖,在△ABC中,AB>AC,點D,E分別是邊AB,AC的中點,點F在BC邊上,連接DE,DF,EF,則添加下列哪一個條件后,仍無法判斷△FCE與△EDF全等()A.∠A=∠DFEB.BF=
2025-06-21 13:09
【摘要】第三節(jié)全等三角形考點一全等三角形的判定(5年2考)例1(2022·濟寧中考)在△ABC中,點E,F(xiàn)分別是邊AB,AC的中點,點D在BC邊上,連接DE,DF,EF,請你添加一個條件,使△BED與△FDE全等.【分析】根據(jù)三角形中位線定理得到EF∥BC,根據(jù)平行四邊形的判定定理
2025-06-21 13:27
2025-06-21 13:25
【摘要】第三節(jié)全等三角形考點一全等三角形的判定及性質(zhì)百變例題4如圖,點B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF,BE=:∠A=∠D.【自主解答】證明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF
2025-06-25 01:17
2025-06-24 14:35
【摘要】第七節(jié)相似三角形考點一比例的有關(guān)概念與性質(zhì)(5年1考)例1(2022·嘉興中考)如圖,直線l1∥l2∥l3,直線AC交l1,l2,l3于點A,B,C;直線DF交l1,l2,l3于點D,E,F(xiàn),已知=,則=.ABAC13EFDE【
2025-06-22 03:43
【摘要】第三節(jié)特殊三角形考點一等腰三角形判定及性質(zhì)的相關(guān)計算例1(2022·漳州)如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C),若線段AD長為正整數(shù),則點D的個數(shù)共有()A.5個B.4個C.3個D.2個【分析】根據(jù)等腰三角形三
2025-06-28 17:16
【摘要】第四節(jié)等腰三角形考點一等腰三角形的性質(zhì)與判定(5年3考)例1(2022·桂林中考)如圖,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,則圖中等腰三角形的個數(shù)是.【分析】首先根據(jù)已知條件分別計算圖中每一個三角形每個角的度數(shù),然后根據(jù)等角對等邊解答,做題時要注意,從
2025-06-28 15:17
【摘要】第四章三角形全等三角形考點1全等三角形的概念及性質(zhì)陜西考點解讀中考說明:理解全等三角形的概念,能識別全等三角形中的對應邊,對應角。:能夠完全重合的兩個三角形叫作全等三角形。(1)全等三角形的對應邊①相等,全等三角形的對應角②相等。(2)全等三角形的對應線段(如對應角的平分線,對應邊上的中線、高)
2025-06-29 13:46
2025-06-29 14:03
【摘要】好題隨堂演練第三節(jié)特殊三角形好題隨堂演練考點一等腰三角形的相關(guān)計算例1(2022·云南省卷)如圖,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于點D,則∠CBD=.【分析】根據(jù)已知可求得兩底角的度數(shù),再根據(jù)三角形內(nèi)角和定理不難求得∠DBC的度數(shù).
2025-06-30 06:45
【摘要】第三節(jié)特殊三角形考點一等腰三角形的判定與性質(zhì)例1(2022·瀘州)如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點D在EG上運動,則△CDF周長的最小值為.【分析】根據(jù)兩點之間,線段最短確定最小值點,再利用等腰三角形的性質(zhì)進行求解
2025-06-26 03:16
2025-06-21 01:33
【摘要】第五節(jié)直角三角形考點一勾股定理及其逆定理(5年5考)命題角度?勾股定理及其逆定理例1(2022·東營中考)在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于()A.10B.8C.6或10D.8或1010【分析】
2025-06-24 16:02
【摘要】第四章三角形第三節(jié)全等三角形考點全等三角形的判定與性質(zhì)例1(2022·河北)如圖,∠A=∠B=50°,P為AB的中點,點M為射線AC上(不與點A重合)的任意一點,連接MP,并使MP的延長線交射線BD于點N,設∠BPN=α.(1)求證:△APM≌△BPN;
2025-06-30 06:00