【摘要】第三節(jié)全等三角形考點一全等三角形的判定(5年2考)例1(2022·東營中考)如圖,在△ABC中,AB>AC,點D,E分別是邊AB,AC的中點,點F在BC邊上,連接DE,DF,EF,則添加下列哪一個條件后,仍無法判斷△FCE與△EDF全等()A.∠A=∠DFEB.B
2025-06-22 03:43
【摘要】第七節(jié)相似三角形考點一比例線段及其性質(zhì)(5年2考)例1(2022·臨沂中考)已知AB∥CD,AD與BC相交于點,AD=10,則AO=.BO2=OC3【分析】根據(jù)平行線分線段成比例定理列出比例式,計算即可.【自主解答】∵AB∥CD,,∴
2025-06-21 13:27
2025-06-21 13:25
【摘要】第四節(jié)等腰三角形考點一等腰三角形的性質(zhì)與判定(5年4考)例1(2022·蘭山一模)如圖,在△ABC中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC交AB于M,交AC于N,若BM+CN=11,則線段MN的長為.【分析】根據(jù)平行線的性質(zhì)及角平分線的定義即可得出答案.
2025-06-29 04:54
2025-06-29 04:51
【摘要】第三節(jié)全等三角形考點一全等三角形的判定及性質(zhì)百變例題4如圖,點B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF,BE=:∠A=∠D.【自主解答】證明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF
2025-06-25 01:17
2025-06-24 14:35
【摘要】第五節(jié)直角三角形考點一勾股定理及其逆定理(5年5考)例1(2022·襄陽中考)已知CD是△ABC的邊AB上的高,若CD=,AD=1,AB=2AC,則BC的長為.3【分析】分兩種情況:①當(dāng)△ABC是銳角三角形,②當(dāng)△ABC是鈍角三角形,分別根據(jù)勾股定理計算
2025-06-29 02:48
【摘要】第三節(jié)特殊三角形考點一等腰三角形判定及性質(zhì)的相關(guān)計算例1(2022·漳州)如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C),若線段AD長為正整數(shù),則點D的個數(shù)共有()A.5個B.4個C.3個D.2個【分析】根據(jù)等腰三角形三
2025-06-28 17:16
【摘要】第三節(jié)全等三角形考點一全等三角形的判定(5年1考)例1如圖,在△ABC中,AB>AC,點D,E分別是邊AB,AC的中點,點F在BC邊上,連接DE,DF,EF,則添加下列哪一個條件后,仍無法判斷△FCE與△EDF全等()A.∠A=∠DFEB.BF=
2025-06-21 20:51
2025-06-21 13:09
【摘要】好題隨堂演練第三節(jié)特殊三角形好題隨堂演練考點一等腰三角形的相關(guān)計算例1(2022·云南省卷)如圖,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于點D,則∠CBD=.【分析】根據(jù)已知可求得兩底角的度數(shù),再根據(jù)三角形內(nèi)角和定理不難求得∠DBC的度數(shù).
2025-06-30 06:45
【摘要】第三節(jié)特殊三角形考點一等腰三角形的判定與性質(zhì)例1(2022·瀘州)如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點D在EG上運動,則△CDF周長的最小值為.【分析】根據(jù)兩點之間,線段最短確定最小值點,再利用等腰三角形的性質(zhì)進(jìn)行求解
2025-06-26 03:16
2025-06-21 01:33