【摘要】......不等式恒成立、能成立、恰成立問(wèn)題分析一、不等式恒成立問(wèn)題問(wèn)題引入:已知不等式對(duì)恒成立,其中,求實(shí)數(shù)的取值范圍。分析:思路(1)通過(guò)化歸最值,直接求函數(shù)的最小值解決,即。思路(2)通過(guò)分離變量,轉(zhuǎn)化
2025-04-02 05:47
【摘要】......例談不等式恒成立問(wèn)題和能成立問(wèn)題的解題策略——談2008年江蘇高考數(shù)學(xué)試卷第14題摘要:所有問(wèn)題均可分成三類:恒成立問(wèn)題、能成立問(wèn)題和不成立問(wèn)題?!独劜坏仁胶愠闪?wèn)題和能成立問(wèn)題》介紹了解決不等式恒成立問(wèn)題和不等式能成立問(wèn)題
【摘要】數(shù)學(xué)解題絕招1一、方法引入:1.數(shù)形結(jié)合法:(1)若f(x)=ax+b,x∈[α,β],則:f(x)0恒成立f(x)0恒成立
2025-08-04 12:19
【摘要】......不等式中恒成立問(wèn)題在不等式的綜合題中,經(jīng)常會(huì)遇到當(dāng)一個(gè)結(jié)論對(duì)于某一個(gè)字母的某一個(gè)取值范圍內(nèi)所有值都成立的恒成立問(wèn)題。恒成立問(wèn)題的基本類型:類型1:設(shè),(1)上恒成立;(2)上恒成立。類型2:設(shè)(1)當(dāng)時(shí),上恒成立,
【摘要】函數(shù)、不等式恒成立問(wèn)題解法(老師用)恒成立問(wèn)題的基本類型:類型1:設(shè),(對(duì)于任意實(shí)數(shù)R上恒成立)(1)上恒成立;(2)上恒成立。類型2:設(shè)(給定某個(gè)區(qū)間上恒成立)(1)當(dāng)時(shí),上恒成立,上恒成立(2)當(dāng)時(shí),上恒成立上恒成立類型3:。類型4:恒成一、用一次函數(shù)的性質(zhì)對(duì)于一次函數(shù)有:例1:若不等式對(duì)滿足的所有都成立,求x
2025-04-02 12:15
【摘要】基礎(chǔ)梳理1.一元二次不等式的解法(1)將不等式的右邊化為零,左邊化為二次項(xiàng)系數(shù)大于零的不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0).(2)求出相應(yīng)的一元二次方程的根.(3)利用二次函數(shù)的圖象與x軸的交點(diǎn)確定一元二次不等式的解集.2.一元二次不等式與相應(yīng)的二次函數(shù)及一元二次方程的關(guān)系如下表:判別式Δ=b2-4acΔ>0
2025-04-02 06:23
【摘要】含參數(shù)的一元二次不等式的解法含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類不等式可從分析兩個(gè)根的大小及二次系數(shù)的正負(fù)入手去解答,但遺憾的是這類問(wèn)題始終成為絕大多數(shù)學(xué)生學(xué)習(xí)的難點(diǎn),此現(xiàn)象出現(xiàn)的根本原因是不清楚該如何對(duì)參數(shù)進(jìn)行討論,而參數(shù)的討論實(shí)際上就是參數(shù)的分類,而參數(shù)該如何進(jìn)行分類?下面我們通過(guò)幾個(gè)例子體會(huì)一下。一.二次項(xiàng)系數(shù)為常數(shù)例1、解關(guān)于x的不
2025-07-04 16:58
【摘要】含參不等式題型一、給出不等式解的情況,求參數(shù)取值范圍:總結(jié):給出不等式組解集的情況,只能確定參數(shù)的取值范圍。記住:“大小小大有解;大大小小無(wú)解。”注:端點(diǎn)值格外考慮。1:已知關(guān)于x的不等式組。(1)若此不等式組無(wú)解,求a的取值范圍,并利用數(shù)軸說(shuō)明。(2)若此不等式組有解,求a的取值范圍,并利用數(shù)軸說(shuō)明2:如果關(guān)于x的不等式組無(wú)解,問(wèn)不等式組的解集是怎
2025-04-02 23:42
【摘要】精品資源數(shù)列中的不等式恒成立不等式的恒成立問(wèn)題是學(xué)生較難理解和掌握的一個(gè)難點(diǎn),以數(shù)列為載體的不等式恒成立問(wèn)題的檔次更高、綜合性更強(qiáng),是高三第二輪復(fù)習(xí)中不可多得的一個(gè)專題.例1:(2003年新教材高考題改編題)設(shè)為常數(shù),數(shù)列的通項(xiàng)公式為,若對(duì)任意不等式恒成立,求的取值范圍.解:,故等價(jià)于. ① ⑴當(dāng)時(shí),①式即為 ,此式對(duì)恒成立,故.(注意小于最小值,為什么不能
2025-07-04 02:18
【摘要】含參不等式專題(淮陽(yáng)中學(xué))編寫:孫宜俊當(dāng)在一個(gè)不等式中含有了字母,則稱這一不等式為含參數(shù)的不等式,那么此時(shí)的參數(shù)可以從以下兩個(gè)方面來(lái)影響不等式的求解,首先是對(duì)不等式的類型(即是那一種不等式)的影響,其次是字母對(duì)這個(gè)不等式的解的大小的影響。我們必須通過(guò)分類討論才可解決上述兩個(gè)問(wèn)題,同時(shí)還要注意是參數(shù)的選取確定了不等式
2025-08-04 06:19
【摘要】......含參不等式專題訓(xùn)練1.對(duì)任意的實(shí)數(shù),不等式恒成立,則實(shí)數(shù)的取值范圍是()A.B.C.D.2.在上運(yùn)算:,若對(duì)任意實(shí)數(shù)成立,則().A.B.C.
【摘要】不等式恒成立問(wèn)題的處理恒成立問(wèn)題在解題過(guò)程中大致可分為以下幾種類型:①一次函數(shù)型;②二次函數(shù)型;③其他類不等式恒成立一、一次函數(shù)型給定一次函數(shù)y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]內(nèi)恒有f(x)0,則根據(jù)函數(shù)的圖象(直線)可得上述結(jié)論等價(jià)于?????0)(0)(nfmf同理,若在[m,n]內(nèi)恒有f(x
2025-01-18 10:08
【摘要】確定不等式恒成立的參數(shù)的取值范圍,是中學(xué)數(shù)學(xué)教學(xué)的難點(diǎn),也是高考的熱點(diǎn)。解答這類問(wèn)題主要有四種方法:其一,利用一次函數(shù)的單調(diào)性;其二,利用二次函數(shù)的單調(diào)性;其三,分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值;其四,利用數(shù)形結(jié)合法。換個(gè)角度看問(wèn)題,換個(gè)方面去解釋,換個(gè)方向去思考.設(shè)一次函數(shù)f(x)=ax+b(a≠0),當(dāng)a0
2024-11-22 01:05
【摘要】不等式(3)----含參不等式的解法當(dāng)在一個(gè)不等式中含有了字母,則稱這一不等式為含參數(shù)的不等式,那么此時(shí)的參數(shù)可以從以下兩個(gè)方面來(lái)影響不等式的求解,首先是對(duì)不等式的類型(即是那一種不等式)的影響,其次是字母對(duì)這個(gè)不等式的解的大小的影響。我們必須通過(guò)分類討論才可解決上述兩個(gè)問(wèn)題,同時(shí)還要注意是參數(shù)的選取確定了不等式的解,而不是不等式的解來(lái)區(qū)分參數(shù)的討論。解參數(shù)不等式一直是高考所考查的重點(diǎn)內(nèi)
2025-06-25 12:16
【摘要】......數(shù)學(xué)數(shù)列與不等式的綜合問(wèn)題突破策略【題1】 等比數(shù)列{an}的公比q>1,第17項(xiàng)的平方等于第24項(xiàng),求使a1+a2+…+an>恒成立的正整數(shù)n的范圍.【題2】設(shè)數(shù)列{an}的前項(xiàng)和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.(1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;(2)若an+1≥a
2025-04-03 02:51