【摘要】決策樹算法及應(yīng)用拓展?內(nèi)容簡(jiǎn)介:?概述?預(yù)備知識(shí)?決策樹生成(BuildingDecisionTree)?決策樹剪枝(PruningDecisionTree)?捕捉變化數(shù)據(jù)的挖掘方法?小結(jié)概述(一)?傳統(tǒng)挖掘方法的局限性?只重視從數(shù)據(jù)庫中提取規(guī)則,忽視了庫中數(shù)據(jù)的變化?挖掘
2025-01-19 19:37
【摘要】決策樹學(xué)習(xí)算法概要?簡(jiǎn)介?決策樹表示法?決策樹學(xué)習(xí)的適用問題?基本的決策樹學(xué)習(xí)算法?決策樹學(xué)習(xí)中的假想空間搜索?決策樹學(xué)習(xí)的常見問題簡(jiǎn)介?決策樹方法的起源是概念學(xué)習(xí)系統(tǒng)CLS,然后發(fā)展到ID3方法而為高潮,最后又演化為能處理連續(xù)屬性的。有名的決策樹方法還有CART和Assistant。
2025-01-18 21:57
【摘要】模式識(shí)別PatternClassification第三章:Bayes決策方法Bayes決策方法?原理?根據(jù)Bayes決策理論,由先驗(yàn)知識(shí)來推斷后驗(yàn)概率?保證錯(cuò)誤概率最小或風(fēng)險(xiǎn)最小3AppliedPatternRecognitionCSE616Bayes決策方法?先驗(yàn)知
2025-01-13 20:53
【摘要】第三章決策樹決策樹(DecisionTree)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過構(gòu)成決策樹來求取凈現(xiàn)值的期望值大于等于零的概率,評(píng)價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行性的決策分析方法,是直觀運(yùn)用概率分析的一種圖解法。由于這種決策分支畫成圖形很像一棵樹的枝干,故稱決策樹。在機(jī)器學(xué)習(xí)中,決策樹是一個(gè)預(yù)測(cè)模型,他代表的是對(duì)象屬性與對(duì)象值之間的一種映射關(guān)系。Entropy=系統(tǒng)的凌亂程度,使用算法ID
2025-06-26 03:55
2025-01-20 19:43
【摘要】第6章決策樹主要內(nèi)容決策樹基本概念決策樹算法決策樹研究問題主要參考文獻(xiàn)主要內(nèi)容決策樹基本概念決策樹算法決策樹研究問題主要參考文獻(xiàn)第6章決策樹決策樹基本概念關(guān)于分類問題分類(Classification)任務(wù)就是通過學(xué)習(xí)獲得一個(gè)目標(biāo)函
2025-01-18 21:54
【摘要】模式識(shí)別課程設(shè)計(jì)模式識(shí)別中基于概率統(tǒng)計(jì)的Bayes算法分析學(xué)號(hào):1102100119班級(jí):自動(dòng)化111班姓名:許世堅(jiān)首先對(duì)模式識(shí)別所用到的理論、研究背景、研究現(xiàn)狀及典型應(yīng)用進(jìn)行全面的闡述;其次,探討了如何提取數(shù)字字符的特征值
2025-06-17 08:06
2025-03-15 11:52
【摘要】決策樹決策樹基本概念決策樹算法主要內(nèi)容決策樹基本概念決策樹算法決策樹基本概念關(guān)于分類問題分類(Classification)任務(wù)就是通過學(xué)習(xí)獲得一個(gè)目標(biāo)函數(shù)(TargetFunction)f,將每個(gè)屬性集x映射到一個(gè)預(yù)先定義好的類標(biāo)號(hào)y。分類任務(wù)的輸入數(shù)據(jù)是紀(jì)錄的
2025-02-01 11:58
【摘要】數(shù)據(jù):weka中的weather數(shù)據(jù)(字符型、數(shù)值型)outlook,temperature,humidity,windy,playsunny,hot,high,FALSE,nosunny,hot,high,TRUE,noovercast,hot,high,FALSE,yesrainy,mild,high,FALSE,yesrainy,cool
2025-01-20 19:39
【摘要】本科畢業(yè)論文(設(shè)計(jì))(題目:決策樹分類算法在教學(xué)分析中的應(yīng)用)姓名:學(xué)號(hào):1142151204專業(yè):計(jì)算機(jī)科學(xué)與技術(shù)院系:信息工程學(xué)院指導(dǎo)老師:袁張露職稱學(xué)歷:助教/研究生完成時(shí)間:
2025-04-28 02:54
【摘要】模式識(shí)別——貝葉斯決策理論馬勤勇一最簡(jiǎn)單的貝葉斯分類算法?還使用前面的例子:鱸魚(seabass)和鮭魚(salmon)。?使用一個(gè)特征亮度對(duì)這兩種魚進(jìn)行表示。?新來了一條魚特征是x(亮度),怎么根據(jù)特征x確定它到底是鱸魚ω1還是鮭魚ω2??已知數(shù)據(jù):鱸魚類標(biāo)號(hào)ω1,鮭魚類標(biāo)號(hào)ω2。鱸魚
2025-03-10 14:22
2025-03-15 11:31