【摘要】第8章決策樹(shù)演算法大綱?說(shuō)明決策樹(shù)演算法的概念?討論有趣決策規(guī)則的概念?用一個(gè)實(shí)例來(lái)展示決策樹(shù)的規(guī)則?探討決策樹(shù)的實(shí)際應(yīng)用?展示在龐大的資料集中如何應(yīng)用決策樹(shù)?在附錄中展示See5的決策樹(shù)分析過(guò)程決策樹(shù)?在資料探勘的領(lǐng)域中,決策樹(shù)(decisiontrees)被認(rèn)為是一種樹(shù)狀結(jié)構(gòu)的規(guī)則(經(jīng)常被稱
2025-01-18 21:57
【摘要】決策樹(shù)算法及應(yīng)用拓展?內(nèi)容簡(jiǎn)介:?概述?預(yù)備知識(shí)?決策樹(shù)生成(BuildingDecisionTree)?決策樹(shù)剪枝(PruningDecisionTree)?捕捉變化數(shù)據(jù)的挖掘方法?小結(jié)概述(一)?傳統(tǒng)挖掘方法的局限性?只重視從數(shù)據(jù)庫(kù)中提取規(guī)則,忽視了庫(kù)中數(shù)據(jù)的變化?挖掘
2025-01-19 19:37
【摘要】決策樹(shù)學(xué)習(xí)算法概要?簡(jiǎn)介?決策樹(shù)表示法?決策樹(shù)學(xué)習(xí)的適用問(wèn)題?基本的決策樹(shù)學(xué)習(xí)算法?決策樹(shù)學(xué)習(xí)中的假想空間搜索?決策樹(shù)學(xué)習(xí)的常見(jiàn)問(wèn)題簡(jiǎn)介?決策樹(shù)方法的起源是概念學(xué)習(xí)系統(tǒng)CLS,然后發(fā)展到ID3方法而為高潮,最后又演化為能處理連續(xù)屬性的。有名的決策樹(shù)方法還有CART和Assistant。
2025-01-20 19:43
【摘要】第6章決策樹(shù)主要內(nèi)容決策樹(shù)基本概念決策樹(shù)算法決策樹(shù)研究問(wèn)題主要參考文獻(xiàn)主要內(nèi)容決策樹(shù)基本概念決策樹(shù)算法決策樹(shù)研究問(wèn)題主要參考文獻(xiàn)第6章決策樹(shù)決策樹(shù)基本概念關(guān)于分類問(wèn)題分類(Classification)任務(wù)就是通過(guò)學(xué)習(xí)獲得一個(gè)目標(biāo)函
2025-01-18 21:54
【摘要】摘要隨著信息科技的高速發(fā)展,人們對(duì)于積累的海量數(shù)據(jù)量的處理工作也日益增重,需求是發(fā)明之母,數(shù)據(jù)挖掘技術(shù)就是為了順應(yīng)這種需求而發(fā)展起來(lái)的一種數(shù)據(jù)處理技術(shù)。數(shù)據(jù)挖掘技術(shù)又稱數(shù)據(jù)庫(kù)中的知識(shí)發(fā)現(xiàn),是從一個(gè)大規(guī)模的數(shù)據(jù)庫(kù)的數(shù)據(jù)中有效地、隱含的、以前未知的、有潛在使用價(jià)值的信息的過(guò)程。決策樹(shù)算法是數(shù)據(jù)挖掘中重要的分類方法,基于決策樹(shù)的各種算法在執(zhí)行速度、可擴(kuò)展性、輸出結(jié)果的可理解性、分類預(yù)測(cè)
2025-07-05 10:13
【摘要】分類與決策樹(shù)概述分類與預(yù)測(cè)分類是一種應(yīng)用非常廣泛的數(shù)據(jù)挖掘技術(shù),應(yīng)用的例子也很多。例如,根據(jù)信用卡支付歷史記錄,來(lái)判斷具備哪些特征的用戶往往具有良好的信用;根據(jù)某種病癥的診斷記錄,來(lái)分析哪些藥物組合可以帶來(lái)良好的治療效果。這些過(guò)程的一個(gè)共同特點(diǎn)是:根據(jù)數(shù)據(jù)的某些屬性,來(lái)估計(jì)一個(gè)特定屬性的值。例如在信用分析案例中,根據(jù)用戶的“年齡”、“性別”、“收入水平”、“職業(yè)”等屬性的值,來(lái)估計(jì)該
2024-08-20 03:50
【摘要】第三章決策樹(shù)決策樹(shù)(DecisionTree)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過(guò)構(gòu)成決策樹(shù)來(lái)求取凈現(xiàn)值的期望值大于等于零的概率,評(píng)價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行性的決策分析方法,是直觀運(yùn)用概率分析的一種圖解法。由于這種決策分支畫(huà)成圖形很像一棵樹(shù)的枝干,故稱決策樹(shù)。在機(jī)器學(xué)習(xí)中,決策樹(shù)是一個(gè)預(yù)測(cè)模型,他代表的是對(duì)象屬性與對(duì)象值之間的一種映射關(guān)系。Entropy=系統(tǒng)的凌亂程度,使用算法ID
2025-06-26 03:55
【摘要】決策樹(shù)-上武承羲內(nèi)容決策樹(shù)基礎(chǔ)經(jīng)典決策樹(shù)剪枝決策樹(shù)決策樹(shù):用來(lái)表示決策和相應(yīng)的決策結(jié)果對(duì)應(yīng)關(guān)系的樹(shù)。樹(shù)中每一個(gè)非葉節(jié)點(diǎn)表示一個(gè)決策,該決策的值導(dǎo)致不同的決策結(jié)果(葉節(jié)點(diǎn))或者影響后面的決策選擇。示例:天氣風(fēng)陽(yáng)光不玩玩不玩玩玩雨
2025-01-30 02:49
【摘要】決策樹(shù)決策樹(shù)基本概念決策樹(shù)算法主要內(nèi)容決策樹(shù)基本概念決策樹(shù)算法決策樹(shù)基本概念關(guān)于分類問(wèn)題分類(Classification)任務(wù)就是通過(guò)學(xué)習(xí)獲得一個(gè)目標(biāo)函數(shù)(TargetFunction)f,將每個(gè)屬性集x映射到一個(gè)預(yù)先定義好的類標(biāo)號(hào)y。分類任務(wù)的輸入數(shù)據(jù)是紀(jì)錄的
2025-02-01 11:58
2025-03-15 11:52
【摘要】決策樹(shù)決策樹(shù)簡(jiǎn)介決策樹(shù)算法A1,A2兩方案投資分別為450萬(wàn)和240萬(wàn),經(jīng)營(yíng)年限為5年,銷路好的概率為,銷路差的概率為,A1方案銷路好年、差年的損益值分別為300萬(wàn)和負(fù)60萬(wàn),A2方案分別為120萬(wàn)和30萬(wàn)。決策樹(shù)簡(jiǎn)介決策樹(shù)簡(jiǎn)介決策狀態(tài)狀態(tài)結(jié)結(jié)
2025-01-30 02:52
2025-03-15 11:31