【摘要】決策樹算法及應(yīng)用拓展?內(nèi)容簡介:?概述?預(yù)備知識?決策樹生成(BuildingDecisionTree)?決策樹剪枝(PruningDecisionTree)?捕捉變化數(shù)據(jù)的挖掘方法?小結(jié)概述(一)?傳統(tǒng)挖掘方法的局限性?只重視從數(shù)據(jù)庫中提取規(guī)則,忽視了庫中數(shù)據(jù)的變化?挖掘
2025-01-19 19:37
2025-03-15 11:52
【摘要】第七章決策樹和決策規(guī)則本章目標(biāo)?分析解決分類問題的基于邏輯的方法的特性.?描述決策樹和決策規(guī)則在最終分類模型中的表述之間的區(qū)別.?介紹.?了解采用修剪方法降低決策樹和決策規(guī)則的復(fù)雜度.?決策樹和決策規(guī)則是解決實(shí)際應(yīng)用中分類問題的數(shù)據(jù)挖掘方法。?一般來說,分類是把數(shù)據(jù)項(xiàng)映射到其中一個(gè)事先定義的類中的這樣一
2025-01-19 19:47
【摘要】第8章決策樹演算法大綱?說明決策樹演算法的概念?討論有趣決策規(guī)則的概念?用一個(gè)實(shí)例來展示決策樹的規(guī)則?探討決策樹的實(shí)際應(yīng)用?展示在龐大的資料集中如何應(yīng)用決策樹?在附錄中展示See5的決策樹分析過程決策樹?在資料探勘的領(lǐng)域中,決策樹(decisiontrees)被認(rèn)為是一種樹狀結(jié)構(gòu)的規(guī)則(經(jīng)常被稱
2025-01-18 21:57
【摘要】決策樹學(xué)習(xí)算法概要?簡介?決策樹表示法?決策樹學(xué)習(xí)的適用問題?基本的決策樹學(xué)習(xí)算法?決策樹學(xué)習(xí)中的假想空間搜索?決策樹學(xué)習(xí)的常見問題簡介?決策樹方法的起源是概念學(xué)習(xí)系統(tǒng)CLS,然后發(fā)展到ID3方法而為高潮,最后又演化為能處理連續(xù)屬性的。有名的決策樹方法還有CART和Assistant。
【摘要】第6章決策樹主要內(nèi)容決策樹基本概念決策樹算法決策樹研究問題主要參考文獻(xiàn)主要內(nèi)容決策樹基本概念決策樹算法決策樹研究問題主要參考文獻(xiàn)第6章決策樹決策樹基本概念關(guān)于分類問題分類(Classification)任務(wù)就是通過學(xué)習(xí)獲得一個(gè)目標(biāo)函
2025-01-18 21:54
【摘要】摘要隨著信息科技的高速發(fā)展,人們對于積累的海量數(shù)據(jù)量的處理工作也日益增重,需求是發(fā)明之母,數(shù)據(jù)挖掘技術(shù)就是為了順應(yīng)這種需求而發(fā)展起來的一種數(shù)據(jù)處理技術(shù)。數(shù)據(jù)挖掘技術(shù)又稱數(shù)據(jù)庫中的知識發(fā)現(xiàn),是從一個(gè)大規(guī)模的數(shù)據(jù)庫的數(shù)據(jù)中有效地、隱含的、以前未知的、有潛在使用價(jià)值的信息的過程。決策樹算法是數(shù)據(jù)挖掘中重要的分類方法,基于決策樹的各種算法在執(zhí)行速度、可擴(kuò)展性、輸出結(jié)果的可理解性、分類預(yù)測
2025-07-05 10:13
【摘要】決策樹決策樹研發(fā)二部武漢中原電子信息有限公司文件狀態(tài):[]草稿[]正式發(fā)布[]正在修改文件標(biāo)識:當(dāng)前版本:作者:張宏超完成日期:2019年3月8日目錄1. 算法介紹 1. 分支節(jié)點(diǎn)選取 1. 構(gòu)建樹 3. 剪枝 102.
2024-08-20 03:21
【摘要】分類與決策樹概述分類與預(yù)測分類是一種應(yīng)用非常廣泛的數(shù)據(jù)挖掘技術(shù),應(yīng)用的例子也很多。例如,根據(jù)信用卡支付歷史記錄,來判斷具備哪些特征的用戶往往具有良好的信用;根據(jù)某種病癥的診斷記錄,來分析哪些藥物組合可以帶來良好的治療效果。這些過程的一個(gè)共同特點(diǎn)是:根據(jù)數(shù)據(jù)的某些屬性,來估計(jì)一個(gè)特定屬性的值。例如在信用分析案例中,根據(jù)用戶的“年齡”、“性別”、“收入水平”、“職業(yè)”等屬性的值,來估計(jì)該
2024-08-20 03:50
【摘要】決策樹決策樹基本概念決策樹算法主要內(nèi)容決策樹基本概念決策樹算法決策樹基本概念關(guān)于分類問題分類(Classification)任務(wù)就是通過學(xué)習(xí)獲得一個(gè)目標(biāo)函數(shù)(TargetFunction)f,將每個(gè)屬性集x映射到一個(gè)預(yù)先定義好的類標(biāo)號y。分類任務(wù)的輸入數(shù)據(jù)是紀(jì)錄的
2025-02-01 11:58
【摘要】數(shù)據(jù):weka中的weather數(shù)據(jù)(字符型、數(shù)值型)outlook,temperature,humidity,windy,playsunny,hot,high,FALSE,nosunny,hot,high,TRUE,noovercast,hot,high,FALSE,yesrainy,mild,high,FALSE,yesrainy,cool
2025-01-20 19:39
【摘要】企業(yè)CRM系統(tǒng)中決策樹算法的應(yīng)用河北金融學(xué)院郭佳許明保定市科技局《基于數(shù)據(jù)挖掘的客戶關(guān)系管理系統(tǒng)應(yīng)用研究》09ZG009摘要:客戶資源決定企業(yè)的核心競爭力,更多的關(guān)心自己的銷售群體,并與之建立良好的、長期的客戶關(guān)系,提升客戶價(jià)值,對全面提升企業(yè)競爭能力和盈利能力具有重要作用。本文以某企業(yè)銷售業(yè)績?yōu)閷ο螅脹Q策樹分類算法,得到支持決策,從而挖掘出理想客戶。關(guān)鍵字:客戶關(guān)系管
2025-07-07 11:51
【摘要】人工智能原理姓名:成軍學(xué)好:510061813論文題目:決策樹算法在商標(biāo)分類中的應(yīng)用中文摘要:決策樹一般都是自上而下的來生成的。每個(gè)決策或事件(即自然狀態(tài))都可能引出兩個(gè)或多個(gè)事件,導(dǎo)致不同的結(jié)果,把這種決策分支畫成圖形很像一棵樹的枝干。本文將使用決策樹算法對給定的商標(biāo)進(jìn)行分類。其中有三大類商標(biāo)數(shù)據(jù),每大類使用五分之三
2025-04-17 13:06
【摘要】決策樹決策樹簡介決策樹算法A1,A2兩方案投資分別為450萬和240萬,經(jīng)營年限為5年,銷路好的概率為,銷路差的概率為,A1方案銷路好年、差年的損益值分別為300萬和負(fù)60萬,A2方案分別為120萬和30萬。決策樹簡介決策樹簡介決策狀態(tài)狀態(tài)結(jié)結(jié)
2025-01-30 02:52
【摘要】第三章決策樹決策樹(DecisionTree)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過構(gòu)成決策樹來求取凈現(xiàn)值的期望值大于等于零的概率,評價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行性的決策分析方法,是直觀運(yùn)用概率分析的一種圖解法。由于這種決策分支畫成圖形很像一棵樹的枝干,故稱決策樹。在機(jī)器學(xué)習(xí)中,決策樹是一個(gè)預(yù)測模型,他代表的是對象屬性與對象值之間的一種映射關(guān)系。Entropy=系統(tǒng)的凌亂程度,使用算法ID
2025-06-26 03:55