【摘要】一、夾逼準則二、單調(diào)有界收斂準則四、小結(jié)思考題極限存在準則兩個重要極限第五節(jié)三、連續(xù)復利連續(xù)復利一、夾逼準則準則Ⅰ如果數(shù)列nnyx,及nz滿足下列條件:,lim,lim)2()3,2,1()1(azaynzxynnnnnnn?????
2024-09-11 12:38
【摘要】主要內(nèi)容典型例題第八章多元函數(shù)微分法及其應用習題課平面點集和區(qū)域多元函數(shù)的極限多元函數(shù)連續(xù)的概念極限運算多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)概念一、主要內(nèi)容全微分的應用高階偏導數(shù)隱函數(shù)求導法則復合函數(shù)求導法
2024-09-11 12:43
【摘要】二、數(shù)列的有關概念四、收斂數(shù)列的性質(zhì)五、小結(jié)思考題三、數(shù)列極限的定義第一節(jié)數(shù)列的極限一、引例“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1.割圓術:播放——劉徽一、引例R正六邊形的面積1A正十二邊形的面積2A????正
2024-09-11 12:40
【摘要】1嬡計艘脊鍬藤殃雖薜腈唱瀲鍘苧晝妾薟革肥堰鏡膳蕕微積分復習嘸篋娑虬岳冶砂崆粗蓯妥七昵鉻豁薇甲脖滁枘3提綱?考試相關?學習內(nèi)容串講?一些作業(yè)中的問題?一些難點綬河概乖螂不嵫嘯痣癱莽憊瑯墳櫪屙林登寤賺米最猗戲巨凇盼幺跽癔椽樂智臚總亭渥剪4復習備考1-網(wǎng)絡輔助
2024-11-12 21:17
【摘要】主要內(nèi)容典型例題第四章中值定理與導數(shù)的應用習題課洛必達法則Rolle定理Lagrange中值定理常用的泰勒公式型00,1,0??型???型??0型00型??Cauchy中值定理Taylor中值定理xxF?)()()(bfaf?0?n
2024-09-11 12:46
【摘要】主要內(nèi)容典型例題第十章微分方程與差分方程習題課基本概念一階方程類型4.線性方程可降階方程線性方程解的結(jié)構相關定理二階常系數(shù)線性方程解的結(jié)構特征方程的根及其對應項f(x)的形式及其特解形式高階方程待
2024-09-01 16:42
【摘要】第一節(jié)數(shù)列極限的定義和性質(zhì)一、數(shù)列極限的定義定義:依次排列的一列數(shù)??,,,,21nxxx稱為無窮數(shù)列,簡稱數(shù)列,記為}{nx.其中的每個數(shù)稱為數(shù)列的項,nx稱為通項(一般項).例如;,2,,8,4,2??n;,21,,81,41,21??n}2{
2025-01-28 08:23
【摘要】§數(shù)列極限第二章極限與連續(xù)本章是微積分的基礎,主要討論函數(shù)的極限與函數(shù)的連續(xù)性。??,,,,,321naaaa稱為數(shù)列,記為na其中稱為數(shù)列的通項或一般項;??na正整數(shù)n稱為的下標。na例如:;,2,,8,4,2??n}2{n;,1,,1,1,1
2025-08-14 06:53
【摘要】;)()(任意小表示AxfAxf????.的過程表示???xXx.0sin)(,無限接近于無限增大時當xxxfx?問題:如何用數(shù)學語言刻劃函數(shù)“無限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無窮大時函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設函數(shù)大于某一正數(shù)時有定義,若
2025-07-31 11:10
【摘要】一、問題的提出二、積分上限函數(shù)及其導數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2024-09-01 08:39
【摘要】微積分理論數(shù)列的極限函數(shù)的極限微積分線性代數(shù)馮國臣2021/12/12定義如果對于任意給定的正數(shù)?(不論它多么小),總存在正數(shù)N,使得對于Nn?時的一切nx,不等式???axn都成立,那末就稱常數(shù)a是數(shù)列nx的極限,或者稱數(shù)列nx收斂于a,記為
【摘要】§函數(shù)極限對于函數(shù)y=?(x),考察它的極限,考察自變量x在定義域內(nèi)變化時,相應的函數(shù)值的變化趨勢。;x???;x???;x??0;xx??0;xx??0;xx?種極限過程統(tǒng)一表示用記號6Xx?,下定義:如果在極限過程Xx?無限趨于)(xf,時當則稱Xx?,)(
2025-01-29 05:31
【摘要】微積分rxdtdx?微積分微積分第二章極限與連續(xù)?數(shù)列的極限?函數(shù)的極限?變量的極限?無窮大量與無窮小量?極限的運算法則?兩個重要的極限?函數(shù)的連續(xù)性微積分函數(shù)極限微積分.sin時的變化趨勢當觀察函數(shù)??xxx播放1.自變量
2024-10-28 18:07
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟應用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2024-09-11 12:42
【摘要】一、六個基本積分二、待定系數(shù)法舉例三、小結(jié)第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個多項式的商表示的函數(shù)稱之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2024-09-11 12:39