【摘要】第1頁共4頁八年級數(shù)學全等三角形之動點問題(全等三角形)拔高練習試卷簡介:本測試主要考察了移動中的全等三角形,在動態(tài)過程中考察全等三角形。本測試分為兩個板塊,板塊一考察點動時的全等三角形,板塊二考察圖形運動中的全等三角形。本測試共八道題目,全部都是解答題,時間為100分鐘。學習建議:本測
2024-09-01 10:00
【摘要】第13章全等三角形三角形全等的判定全等三角形的判定條件1.全等三角形的判定條件(1)對兩個斜三角形來說,六個元素(三條邊、三個內(nèi)角)中至少要有元素分別對應(yīng)相等,那么這兩個三角形才可能全等.(2)兩個三角形有3組對應(yīng)相等的元素,那么所有的四種情況是:、、
2025-06-21 06:04
【摘要】全等三角形判定11全等形:能夠完全重合的兩個圖形叫全等形小結(jié):2全等三角形:能夠完全重合的兩個三角形叫全等三角形:重合的邊叫對應(yīng)邊重合的頂點叫對應(yīng)頂點重合的角叫對應(yīng)角其中全等的符號≌必須注意使用時要做到對應(yīng)!觀察中發(fā)現(xiàn):全等三角形性質(zhì)1、全等三角對應(yīng)邊
2024-11-18 20:40
【摘要】作業(yè)布置評價小結(jié)鞏固練習講授新課復習判定兩個三角形全等要具備什么條件?
2024-08-31 01:10
【摘要】三角形全等的判定(SAS)如果兩個三角形有兩條邊和一個角分別對應(yīng)相等,這兩個三角形會全等嗎?--這是本節(jié)我們要探討的課題。如果已知一個三角形的兩邊及一角,那么有幾種可能的情況呢?每一種情況得到的三角形都全等嗎應(yīng)該有兩種情況:一種是角夾在兩條邊的中間,形成兩邊夾一角;另一情況是角不夾在兩邊的中間,形成兩邊一對角。做一做:畫△
2024-11-21 13:56
【摘要】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三
2025-06-24 12:08
2024-11-21 03:54
【摘要】全等三角形基礎(chǔ)練習一.解答題(共24小題)1.如圖,已知AB⊥AC,AB=AC,DE過點A,且CD⊥DE,BE⊥DE,垂足分別為點D,E.求證:△ADC≌△BEA.2.如圖,AB∥ED,已知AC=BE,且點B、C、D三點共線,若∠E=∠ACB.求證:BC=DE.3.如圖,點B,F(xiàn),C,E在直線l上(F,C之間不能直接測量),點A,D在l異側(cè),測得AB=DE,AC=DF,B
2024-08-20 02:49
【摘要】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階
2025-06-23 12:14
【摘要】全等三角形的判定綜合練習(一)我們學過____種判定兩個三角形全等的方法,它們分別是___________________________________________。(一)例題講解1、已知:點B、E、C、F在同一直線上,AB=DE,∠A=∠D,AC∥DF.求證:⑴ △ABC≌△DEF;??⑵ BE=CF.????
2025-07-04 04:37
【摘要】三角形全等的判定(二)孫金煥已知:如圖,要得到△ABC≌△ABD,已經(jīng)具備的條件是AB=AB,根據(jù)所給的判定方法,在下列橫線上寫出還需要的兩個條件(1)(SAS)(
2024-11-18 15:12
【摘要】第3課時 利用“角邊角”“角角邊”判定三角形全等學前溫故新課早知判定三角形全等的方法:(1)三邊分別 的兩個三角形全等(可以簡寫成“ ”或“ ”).?(2)兩邊和它們的夾角分別 的兩個三角形全等(可以簡寫成“ ”或“ ”).?相等邊邊邊
2025-06-28 18:45
【摘要】全等三角形的判定(三)執(zhí)教者:鄧時榮復習:2、記得“邊邊邊”、“邊角邊”的具體內(nèi)容嗎?3、當兩邊及其中一邊的對角對應(yīng)相等的兩個三角形一定全等嗎?三邊對應(yīng)相等的兩個三角形全等;兩邊和它們的夾角對應(yīng)相等的兩個三角形全等。不一定全等1、前面我們學習過哪幾種判定兩個三角形全等的方法?邊邊邊;邊角邊ACB
2024-09-13 12:47