【摘要】全等三角形角邊角判定的基本練習(xí)圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。注意:三角形全
2025-04-02 07:40
【摘要】全等三角形的判定基礎(chǔ)50題專練1.已知AD是⊿ABC的中線,BE⊥AD,CF⊥AD,問BE=CF嗎?說明理由。ABCDFE2.已知AC=BD,AE=CF,BE=DF,問AE∥CF嗎?ACBDEFDCFEAB3.已知AB=CD,BE=DF,AE=CF,問A
2025-04-02 07:39
【摘要】全等三角形的判定方法SAS專題練習(xí)第1題,AB=AC,AD=AE,欲證△ABD≌△ACE,可補充條件()A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD△ABC≌△A′B′C′的條件是()A.AB=A′B′,AC=A′C′,∠C=∠CB.B.AB=A′B′,∠A=∠A′,BC=B′C
【摘要】全等三角形的判定HL練習(xí)題1.在Rt△ABC和Rt△DEF中,∠ACB=∠DFE=°90,AB=DE,AC=DF,那么Rt△ABC與Rt△DEF(填全等或不全等)2.如圖,點C在∠DAB的內(nèi)部,CD⊥AD于D,CB⊥AB于B,CD=CB那么Rt△ADC≌Rt△ABC的理由是()A.SSSB.ASAC.SAS
2025-04-02 07:38
【摘要】全等三角形判定11全等形:能夠完全重合的兩個圖形叫全等形小結(jié):2全等三角形:能夠完全重合的兩個三角形叫全等三角形:重合的邊叫對應(yīng)邊重合的頂點叫對應(yīng)頂點重合的角叫對應(yīng)角其中全等的符號≌必須注意使用時要做到對應(yīng)!觀察中發(fā)現(xiàn):全等三角形性質(zhì)1、全等三角對應(yīng)邊
2024-11-18 20:40
【摘要】三角形全等的判定(二)孫金煥已知:如圖,要得到△ABC≌△ABD,已經(jīng)具備的條件是AB=AB,根據(jù)所給的判定方法,在下列橫線上寫出還需要的兩個條件(1)(SAS)(
2024-11-18 15:12
【摘要】全等三角形復(fù)習(xí)題一、選擇題1.如圖,給出下列四組條件:①ABDEBCEFACDF???,,;②ABDEBEBCEF?????,,;③BEBCEFCF???????,,;④ABDEACDFBE?????,,.其中,能使ABCDEF△≌△的條件共有(
2024-12-04 01:35
【摘要】作業(yè)布置評價小結(jié)鞏固練習(xí)講授新課復(fù)習(xí)判定兩個三角形全等要具備什么條件?
2024-08-31 01:10
2024-11-21 03:54
【摘要】全等三角形的判定(三)執(zhí)教者:鄧時榮復(fù)習(xí):2、記得“邊邊邊”、“邊角邊”的具體內(nèi)容嗎?3、當(dāng)兩邊及其中一邊的對角對應(yīng)相等的兩個三角形一定全等嗎?三邊對應(yīng)相等的兩個三角形全等;兩邊和它們的夾角對應(yīng)相等的兩個三角形全等。不一定全等1、前面我們學(xué)習(xí)過哪幾種判定兩個三角形全等的方法?邊邊邊;邊角邊ACB
2024-09-13 12:47
【摘要】全等三角形的判定教學(xué)目標(biāo)1知識目標(biāo):掌握“邊邊邊”條件的內(nèi)容,并能初步應(yīng)用“邊邊邊”條件判定兩個三角形全等.2能力目標(biāo):使學(xué)生經(jīng)歷探索三角形全等條件的過程,體會如何探索研究問題,并初步體會分類思想,提高學(xué)生分析問題和解決問題的能力.3思想目標(biāo):通過畫圖、比較、驗證,培養(yǎng)學(xué)生注重觀察、善于思考、不斷總
2025-04-25 23:10
【摘要】五、全等三角形綜合題判斷題(1)判定兩個三角形全等必須至少要有一邊相等;(2)有兩角一邊分別相等的兩個三角形全等;(3)有一條邊及這邊上的高與中線都對應(yīng)相等的兩個三角形全等;(4)周長和面積都相等的兩個三角形全等五、全等三角形綜合題如圖,已知△ABC,分別以AB,AC為邊向外作正△ABD和正△ACE
2024-12-04 04:21
【摘要】......全等三角形角邊角判定的基本練習(xí)1、如圖,∠ABC=∠DCB,∠ACB=∠DCB,試說明△ABC≌△DCB. AD
【摘要】相似三角形的判定①1、已知兩數(shù)4和8,試寫出第三個數(shù),使這三個數(shù)中,其中一個數(shù)是其余兩數(shù)的比例中項,第三個數(shù)是(只需寫出一個即可).2、在△ABC中,AB=8,AC=6,點D在AC上,且AD=2,若要在AB上找一點E,使△ADE與原三角形相似,那么AE=。3、如圖,在△ABC中,點D在AB上,請再添一個適當(dāng)?shù)臈l件,使△ADC∽△ACB,那么可添加的條件
2025-07-03 00:28