freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

【中考數(shù)學】易錯易錯壓軸勾股定理選擇題訓練經(jīng)典題目(含答案)-展示頁

2025-04-01 22:30本頁面
  

【正文】 所求.【詳解】解:如圖,將容器側(cè)面展開,作A關(guān)于EF的對稱點,連接,則即為最短距離,根據(jù)題意:,.所以底面圓的周長為92=18cm.故選:C.【點睛】本題考查了平面展開——最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關(guān)鍵.9.C解析:C【分析】存在2種情況,△ABC是銳角三角形和鈍角三角形時,高AD分別在△ABC的內(nèi)部和外部【詳解】情況一:如下圖,△ABC是銳角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周長為:15+12+9+5=42情況二:如下圖,△ABC是鈍角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周長為:15+13+4=32故選:C【點睛】本題考查勾股定理,解題關(guān)鍵是多解,注意當幾何題型題干未提供圖形時,往往存在多解情況.10.B解析:B【分析】過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45176。由作圖可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45176。從而證明△BOE是直角三角形,然后設(shè)AB=x,則OB=3+x,根據(jù)周長最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【詳解】解:作點A關(guān)于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C, 此時△ABC周長最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周長的最小值是6,∴AB+BE=6,∵∠MON=45176?!唷螪CB=45176。=∠DBC,∴BD=DC,在△BDF和△CDA中 ,∴△BDF≌△CDA(AAS),∴BF=AC;故(2)正確; (3)∵在△BCD中,∠CDB=90176。﹣45176?!螧DC=90176?!螦BE+∠DFB=90176?!唷螦=∠BCA,∴AB=BC,∴△ABC是等腰三角形;故(1)正確; (2)∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90176。AC=BC,AD⊥CE,BE⊥CE,垂足分別是點D、E,AD=3,BE=1,則BC的長是( ?。〢. B.2 C. D.28.已知,等邊三角形ΔABC中,邊長為2,則面積為( )A.1 B.2 C. D.29.如圖,中,有一點在上移動.若,則的最小值為( )A.8 B. C. D.1030.如圖,是我國古代著名的“趙爽弦圖”的示意圖,此圖是由四個全等的直角三角形拼接而成,其中AE=10,BE=24,則EF的長是( ?。〢.14 B.13 C.14 D.14【參考答案】***試卷處理標記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.A解析:A【分析】根據(jù)各個圖象,利用面積的不同表示方法,列式證明結(jié)論,找出不能證明的那個選項.【詳解】解:A選項不能證明勾股定理;B選項,通過大正方形面積的不同表示方法,可以列式,可得;C選項,通過梯形的面積的不同表示方法,可以列式,可得;D選項,通過這個不規(guī)則圖象的面積的不同表示方法,可以列式,可得.故選:A.【點睛】本題考查勾股定理的證明,解題的關(guān)鍵是掌握勾股定理的證明方法.2.D解析:D【分析】先根據(jù)B(3m,4m+1),可知B在直線y=x+1上,所以當BD⊥直線y=x+1時,BD最小,找一等量關(guān)系列關(guān)于m的方程,作輔助線:過B作BH⊥x軸于H,則BH=4m+1,利用三角形相似得BH2=EH?FH,列等式求m的值,得BD的長即可.【詳解】解:如圖,∵點B(3m,4m+1),∴令,∴y=x+1,∴B在直線y=x+1上,∴當BD⊥直線y=x+1時,BD最小,過B作BH⊥x軸于H,則BH=4m+1,∵BE在直線y=x+1上,且點E在x軸上,∴E(?,0),G(0,1)∵F是AC的中點∵A(0,?2),點C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH?FH,∴(4m+1)2=(3m+)(3?3m)解得:m1=?(舍),m2=,∴B(,),∴BD=2BF=2=6,則對角線BD的最小值是6;故選:D.【點睛】本題考查了平行四邊形的性質(zhì),利用待定系數(shù)法求一次函數(shù)的解析式,三角形相似的判定,圓形與坐標特點,.3.C解析:C【分析】(1)根據(jù)角平分線的定義可得∠ABE=∠CBE,根據(jù)等角的余角相等求出∠A=∠BCA,再根據(jù)等角對等邊可得AB=BC,從而得證;(2)根據(jù)三角形的內(nèi)角和定理求出∠A=∠DFB,推出BD=DC,根據(jù)AAS證出△BDF≌△CDA即可;(3)根據(jù)等腰直角三角形斜邊上的中線等于斜邊的一半進行解答;(4)由(2)得出BF=AC,再由BF平分∠DBC和BE⊥AC通過ASA證得△ABE≌△CBE,即得CE=AE=AC,連接CG,由H是BC邊的中點和等腰直角三角形△DBC得出BG=CG,再由直角△CEG得出CG2=CE2+
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1