freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)培優(yōu)(含解析)之平行四邊形及答案解析-展示頁(yè)

2025-03-30 22:26本頁(yè)面
  

【正文】 GH,EF=GH,證得四邊形EGHF是平行四邊形,證得EF⊥AP,推出EF⊥EG,即可得出結(jié)論;(2)由△APE與△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE與△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF與△CPF的底AF=CF,又等高,得出S△APF=S△CPF,證得△PGH底邊GH上的高等于△AEF底邊EF上高的一半,推出S△PGH=S△AEF=S△APF,即可得出結(jié)果.【詳解】(1)證明:∵E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,∴EF∥GH,EF=GH,∴四邊形EGHF是平行四邊形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四邊形EGHF是矩形;(2)∵PE是△APB的中線,∴△APE與△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中線,∴△APE與△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中線,∴△APF與△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),∴△AEF底邊EF上的高等于△ABC底邊BC上高的一半,△PGH底邊GH上的高等于△PBC底邊BC上高的一半,∴△PGH底邊GH上的高等于△AEF底邊EF上高的一半,∵GH=EF,∴S△PGH=S△AEF=S△APF,綜上所述,與△BPE面積相等的三角形為:△APE、△APF、△CPF、△PGH.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、平行四邊形的判定、三角形中位線定理、平行線的性質(zhì)、三角形面積的計(jì)算等知識(shí),熟練掌握三角形中位線定理是解決問(wèn)題的關(guān)鍵.5.閱讀下列材料:我們定義:若一個(gè)四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,則這條對(duì)角線叫這個(gè)四邊形的和諧線,這個(gè)四邊形叫做和諧四邊形.如正方形就是和諧四邊形.結(jié)合閱讀材料,完成下列問(wèn)題:(1)下列哪個(gè)四邊形一定是和諧四邊形   .A.平行四邊形 B.矩形 C.菱形 D.等腰梯形(2)命題:“和諧四邊形一定是軸對(duì)稱圖形”是    命題(填“真”或“假”).(3)如圖,等腰Rt△ABD中,∠BAD=90176。.∴△AOE≌△BOG(AAS),∴OE=OG,AE=BG,∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,∴BF﹣AF=2OE.2.問(wèn)題發(fā)現(xiàn):()如圖①,點(diǎn)為平行四邊形內(nèi)一點(diǎn),請(qǐng)過(guò)點(diǎn)畫一條直線,使其同時(shí)平分平行四邊形的面積和周長(zhǎng).問(wèn)題探究:()如圖②,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上,點(diǎn) 坐標(biāo)為.已知點(diǎn)為矩形外一點(diǎn),請(qǐng)過(guò)點(diǎn)畫一條同時(shí)平分矩形面積和周長(zhǎng)的直線,說(shuō)明理由并求出直線,說(shuō)明理由并求出直線被矩形截得線段的長(zhǎng)度.問(wèn)題解決:()如圖③,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上,軸,軸,且,點(diǎn)為五邊形內(nèi)一點(diǎn).請(qǐng)問(wèn):是否存在過(guò)點(diǎn)的直線,分別與邊與交于點(diǎn)、且同時(shí)平分五邊形的面積和周長(zhǎng)?若存在,請(qǐng)求出點(diǎn)和點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由. 【答案】(1)作圖見(jiàn)解析;(2),;(3),.【解析】試題分析:(1)連接AC、BD交于點(diǎn)O,作直線PO,直線PO將平行四邊形ABCD的面積和周長(zhǎng)分別相等的兩部分.(2)連接AC,BD交于點(diǎn),過(guò)、P點(diǎn)的直線將矩形ABCD的面積和周長(zhǎng)分為分別相等的兩部分.(3)存在,直線平分五邊形面積、周長(zhǎng).試題解析:()作圖如下:()∵,∴設(shè),∴,交軸于,交于,.()存在,直線平分五邊形面積、周長(zhǎng).∵在直線上,∴連交、于點(diǎn)、設(shè),∴直線,聯(lián)立,得,∴,.3.如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).【答案】(1)證明見(jiàn)解析;(2).【解析】分析:(1)根據(jù)平行四邊形ABCD的性質(zhì),判定△BOE≌△DOF(ASA),得出四邊形BEDF的對(duì)角線互相平分,進(jìn)而得出結(jié)論;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的長(zhǎng).詳解:(1)證明:∵四邊形ABCD是矩形,O是BD的中點(diǎn),∴∠A=90176?!唷螦OG+∠BOG=90176?!唷螦OE+∠AOG=90176?!嗨倪呅蜨BFE為矩形∴BF=HE,EF=BH∵四邊形ABCD是正方形∴OA=OB,∠AOB=90176?!唷螦OE=∠OBH∴△AEO≌△OHB(AAS)∴AE=OH,OE=BH∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.②AF﹣BF=2OE 證明:如圖3,延長(zhǎng)OE,過(guò)點(diǎn)B作BH⊥OE于點(diǎn)H∴∠EHB=90176?!嗨倪呅蜤FBH為矩形∴BF=EH,EF=BH∵四邊形ABCD為正方形∴OA=OB,∠AOB=90176?!逴E⊥AB,∴OE=AB,∴AB=2OE,(2)①AF+BF=2OE證明:如圖2,過(guò)點(diǎn)B作BH⊥OE于點(diǎn)H∴∠BHE=∠BHO=90176。再根據(jù)同角的余角相等求出∠AOE=∠OBH,然后利用“角角邊”證明△AOE和△OBH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得OH=AE,OE=BH,再根據(jù)AFEF=AE,整理即可得證;②過(guò)點(diǎn)B作BH⊥OE交OE的延長(zhǎng)線于H,可得四邊形BHEF是矩形
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1