freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

幾何畫板在現(xiàn)代教學(xué)中的應(yīng)用-文庫(kù)吧資料

2024-11-09 17:03本頁(yè)面
  

【正文】 標(biāo),直線y=kx+d又經(jīng)過(guò)C、M兩個(gè)點(diǎn),可得直線的解析式為y=x+3。分析:這道目,第(1)、(2)問(wèn)都比較容易解決,第(3)問(wèn)就是關(guān)于動(dòng)點(diǎn)的,比較抽象,然而運(yùn)用幾何畫板后,情況就變得很明顯了,給解題幫助很大。如圖,已知二次函數(shù)y=ax2+bx+3的圖像經(jīng)過(guò)A(1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C。這三種方法都可得出這個(gè)正方形的面積,注意觀察得到的結(jié)果都是一樣的。用同樣的方法,可得出另外幾個(gè)關(guān)鍵點(diǎn),再將這幾條垂線隱藏,連接對(duì)應(yīng)的點(diǎn),即可得到下面這個(gè)圖形。再如,在講解“趙爽弦圖”時(shí),傳統(tǒng)的教學(xué)方法只能教師在黑板上演算過(guò)程,而用幾何畫板更容易發(fā)現(xiàn)其中的不變的規(guī)律。在幾何畫板里,先畫一個(gè)直角△ABC,∠C=900。如在勾股定理的教學(xué)中,直角三角形的三邊之間有著必然的聯(lián)系。如平行、垂直,中點(diǎn),角平分線等等都能在圖形的變化中保持下來(lái),不會(huì)因圖形的改變而改變,這也許是幾何畫板中最富有魅力的地方。同時(shí)可以觀察到△ABC與△A′B′C′沿MN對(duì)折后完全重合。△ABC和△A′B′C′關(guān)于MN軸對(duì)稱。在講解軸對(duì)稱圖形的教學(xué)中,可充分利用幾何畫板中提供的圖形變換功能進(jìn)行講解。二、在軸對(duì)稱圖形教學(xué)中的應(yīng)用幾何畫板提供了四種“變換”工具,包括平移、旋轉(zhuǎn)、縮放和反射變換。如圖:通過(guò)不斷改變參數(shù)“k”、“b”的值,從而得到不同的函數(shù)圖像,引導(dǎo)學(xué)生觀察一次函數(shù)圖像變化的規(guī)律。整個(gè)過(guò)程顯得不夠直觀,重點(diǎn)不突出,學(xué)生理解起來(lái)也很難。整個(gè)過(guò)程十分繁瑣,且費(fèi)時(shí)費(fèi)力。一、在一次函數(shù)教學(xué)中的應(yīng)用在幾何畫板中,可以新建參數(shù)(即變量),然后在函數(shù)中進(jìn)行引用并繪制函數(shù)圖像,通過(guò)改變參數(shù)的值來(lái)觀察函數(shù)圖像的變化,這在傳統(tǒng)教學(xué)中無(wú)法辦到。幾何畫板又不同于其他繪圖工具,它能動(dòng)態(tài)地保持給定的幾何關(guān)系,便于學(xué)生自行動(dòng)手在變化的圖形中發(fā)現(xiàn)其不變的幾何規(guī)律,從而打破傳統(tǒng)純理論數(shù)學(xué)教學(xué)的局面,成為提倡數(shù)學(xué)實(shí)驗(yàn),培養(yǎng)學(xué)生創(chuàng)新能力的新新工具??v觀現(xiàn)在常用的軟件,幾何畫板具有操作簡(jiǎn)單、功能強(qiáng)大的特點(diǎn),是廣大數(shù)學(xué)教師進(jìn)行現(xiàn)代化數(shù)學(xué)教學(xué)理想工具?!娟P(guān)鍵詞】幾何畫板 函數(shù) 參數(shù) 動(dòng)點(diǎn)在傳統(tǒng)的數(shù)學(xué)教學(xué)中,教師靠的主要是一張嘴、一支粉筆、一塊黑板進(jìn)行教學(xué)。尤其是在數(shù)學(xué)教學(xué)這樣一個(gè)比較抽象的學(xué)科教學(xué)中顯得尤為突出,那么如何利用現(xiàn)代信息技術(shù)為現(xiàn)在的數(shù)學(xué)教學(xué)服務(wù)呢!幾何畫板是當(dāng)今數(shù)學(xué)教師運(yùn)用最為廣泛的軟件之一,本文將從以下幾個(gè)方面作介紹幾何畫板在數(shù)學(xué)教學(xué)中的應(yīng)用:幾何畫板在一次函數(shù)教學(xué)中的應(yīng)用、在軸對(duì)稱圖形教學(xué)中的應(yīng)用、在勾股定理教學(xué)中的應(yīng)用、在求解實(shí)際問(wèn)題中的簡(jiǎn)單應(yīng)用。這樣,既能激發(fā)學(xué)生的情感、培養(yǎng)學(xué)生的興趣,又能大大提高課堂效率。先讓學(xué)生猜測(cè)這樣的點(diǎn)的軌跡是什么圖形,學(xué)生各抒己見(jiàn)之后,老師演示圖7(1),學(xué)生豁然開朗:“原來(lái)是橢圓”。具體地說(shuō),比如在講平行直線系y=x+b或中心直線系y=kx+2時(shí),如圖6所示,分別拖動(dòng)圖(1)中的點(diǎn)A和圖(2)中的點(diǎn)B時(shí),可以相應(yīng)的看到一組斜率為1的平行直線和過(guò)定點(diǎn)(0,2)的一組直線(不包括y軸)。這樣,《幾何畫板》又以其極強(qiáng)的運(yùn)算功能和圖形圖象功能在解析幾何的教與學(xué)中大顯身手。三、《幾何畫板》在平面解析幾何教學(xué)中的應(yīng)用平面解析幾何是用代數(shù)方法來(lái)研究幾何問(wèn)題的一門數(shù)學(xué)學(xué)科,它研究的主要問(wèn)題,即它的基本思想和基本方法是:根據(jù)已知條件,選擇適當(dāng)?shù)淖鴺?biāo)系,借助形和數(shù)的對(duì)應(yīng)關(guān)系,求出表示平面曲線的方程,把形的問(wèn)題轉(zhuǎn)化為數(shù)來(lái)研究;再通過(guò)方程,研究平面曲線的性質(zhì),把數(shù)的研究轉(zhuǎn)化為形來(lái)討論。像在講二面角的定義時(shí)(如圖2),當(dāng)拖動(dòng)點(diǎn)A時(shí),點(diǎn)A所在的半平面也隨之轉(zhuǎn)動(dòng),即改變二面角的大小,圖形的直觀地變動(dòng)有利于幫助學(xué)生建立空間觀念和空間想象力;在講棱臺(tái)的概念時(shí),可以演示由棱錐分割成棱臺(tái)的過(guò)程(如圖3),更可以讓棱錐和棱臺(tái)都轉(zhuǎn)動(dòng)起來(lái),使學(xué)生在直觀掌握棱臺(tái)的定義,并通過(guò)棱臺(tái)與棱錐的關(guān)系由棱錐的性質(zhì)得出棱臺(tái)的性質(zhì)的同時(shí),讓學(xué)生欣賞到數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;在講錐體的體積時(shí),可以演示將三棱柱分割成三個(gè)體積相等的三棱錐的過(guò)程(如圖4),既避免了學(xué)生空洞的想象而難以理解,又鍛煉了學(xué)生用分割幾何體的方法解決問(wèn)題的能力。而應(yīng)用《幾何畫板》將圖形動(dòng)起來(lái),就可以使圖形中各元素之間的位置關(guān)系和度量關(guān)系惟妙惟肖,使學(xué)生x 2 從各個(gè)不同的角度去觀察圖形。如兩條互相垂直的直線不一定畫成交角為直角的兩條直線;正方體的各面不能都畫成正方形等。從平面圖形到空間圖形,從平面觀念過(guò)渡到立體觀念,無(wú)疑是認(rèn)識(shí)上的一次飛躍。例如,借助于圖形對(duì)不等式的一些性質(zhì)、定理和解法進(jìn)行直觀分析──由“半徑不小于半弦”證明不等式“a+b≥2(a、b∈R+)等;再比如,講解數(shù)列的極限的概念時(shí),作出數(shù)列an=10n的圖形(即作出一個(gè)由離散點(diǎn)組成的函數(shù)圖象),觀察曲線的變化趨勢(shì),并利用《幾何畫板》的制表功能以“項(xiàng)數(shù)、這一項(xiàng)的值、這一項(xiàng)與0的絕對(duì)值”列表,幫助學(xué)生直觀地理解這一較難的概念。具體說(shuō)來(lái),可以用《幾何畫板》根據(jù)函數(shù)的解析式快速作出函數(shù)的圖象,并且可以在同一個(gè)坐標(biāo)系中作出多個(gè)函數(shù)的圖象,如在同一個(gè)直角坐標(biāo)系中作出函數(shù)y=2x和y=(12)的圖象,比較圖象的形狀和位置,歸納指數(shù)函數(shù)的性質(zhì);還可以作出含有若干參數(shù)的函數(shù)圖象,當(dāng)參數(shù)變化時(shí)函數(shù)圖象也相應(yīng)地變化,如在講函數(shù)y=Asin(ωx+φ)的圖象時(shí),傳統(tǒng)教學(xué)只能將A、ω、φ代入有限個(gè)值,觀察各種情況時(shí)的函數(shù)圖象之間的關(guān)系;利用《幾何畫板》則可以以線段b、T的長(zhǎng)度和A點(diǎn)到x軸的距離為參數(shù)作圖(如圖1),當(dāng)拖動(dòng)兩條線段的某一端點(diǎn)(即改變兩條線段的長(zhǎng)度)時(shí)分別改變?nèi)呛瘮?shù)的首相和周期,拖動(dòng)點(diǎn)A則改變其振幅,這樣在教學(xué)時(shí)既快速靈活,又不失一般性?!焙瘮?shù)的兩種表達(dá)方式──解析式和圖象──之間常常需要對(duì)照(如研究函數(shù)的單調(diào)性、討論方程或不等式的解的情況、比較指數(shù)函數(shù)和對(duì)數(shù)函數(shù)圖象之間的關(guān)系等)。那么,《幾何畫板》在高中數(shù)學(xué)教學(xué)中有哪些應(yīng)用呢?作為一名高中數(shù)學(xué)教師筆者就此談幾點(diǎn)體會(huì):一、《幾何畫板》在高中代數(shù)教學(xué)中的應(yīng)用函數(shù)”是中學(xué)數(shù)學(xué)中最基本、最重要的概念,它的概念和思維方法滲透在高中數(shù)學(xué)的各個(gè)部分;同時(shí),函數(shù)是以運(yùn)動(dòng)變化的觀點(diǎn)對(duì)現(xiàn)實(shí)世界數(shù)量關(guān)系的一種刻劃,這又決定了它是對(duì)學(xué)生進(jìn)行素質(zhì)教育的重要材料。”因此,隨著計(jì)算機(jī)多媒體的出現(xiàn)和飛速發(fā)展,在網(wǎng)絡(luò)技術(shù)廣泛應(yīng)用于各個(gè)領(lǐng)域的同時(shí),也給學(xué)校教育帶來(lái)了一場(chǎng)深刻的變革──用計(jì)算機(jī)輔助教學(xué),改善人們的認(rèn)知環(huán)境──越來(lái)越受到重視。同樣,一個(gè)學(xué)生如果根本不具備數(shù)學(xué)想象力,要把數(shù)學(xué)學(xué)好那也是不可能的。第二篇:淺談幾何畫板在教學(xué)中的應(yīng)用淺談《幾何畫板》在數(shù)學(xué)教學(xué)中的應(yīng)用常寧市職業(yè)中專 譚
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1