freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

不等式的證明-文庫吧資料

2024-11-08 22:00本頁面
  

【正文】 a+b=1,求證:(a+已知a+b+c0,ab+bc+ca0,abc0,求證:a,b,c全為正數(shù)。(三)解答題1已知a0,b0,a≠b,求證:a+1已知a,b,c是三角形三邊的長,求 證:1中天教育咨詢電話:04768705333第5頁/共9頁ab+c+ba+c+ca+b2。1當(dāng)00且t≠1時,logat與log21t+1a22aba+1b+1 D、a+b≥2(ab1)22的大小關(guān)系是__________。logbc=4,則下列各式中一定正確的是 A、ac≥b B、ab≥c C、bc≥a D、ab≤c已知a,b,c0,且a+bc,設(shè)M=a4+a+bb+cc4+c,N=,則MN的大小關(guān)系是A、MN B、M=N C、M已知函數(shù)f(x)=xx3,x1,x2,x3∈R,且x1+x20,x2+x30,x3+x10,則f(x1)+f(x2)+f(x3)的值 A、一定大于零 B、一定小于零 C、一定等于零 D、正負(fù)都有可能若a0,b0,x=111(+)2ab1a+b1ab,y=,z=,則A、x≥yz B、x≥zy C、y≥xz D、yz≥x設(shè)a,b∈R,下面的不等式成立的是 A、a+3abb B、abab+ab C、(二)填空題設(shè)a0,b0,a≠b,則aabb與abba的大小關(guān)系是__________。當(dāng)a0時|ax+b|≤|ax|+|b|=|a||x|+|b|≤|a|+|b|≤a+|b| 下面對b討論① b≥0時,a+|b|=a+b=|a+b|=|f(1)f(0)| ≤ |f(1)|+|f(0)|≤2; ② b評注:本題證明過程中,還應(yīng)根據(jù)不等號的方向,合理選擇不等式,例如:既有|ab|≥|a||b|,又有|ab|≥|b||a|,若不適當(dāng)選擇,則不能滿足題目要求。∵ f(1)=a+b+c,f(1)=ab+c ∴ b=12[f(1)f(1)] 12|f(1)f(1)|≤12[|f(1)|+|f(1)|]≤12(1+1)≤1 ∴ |b|=(2)思路一:利用函數(shù)思想,借助于單調(diào)性求g(x)=ax+b的值域。就本題來說,還有一個如何充分利用條件“當(dāng)|x|≤1時,|f(x)|≤1”的解題意識。?177。b|≤|a|+|b|,|a1177?!纠?】 已知a,b,c∈R,f(x)=ax2+bx+c,當(dāng)|x|≤1時,有|f(x)|≤1,求證:(1)|c|≤1,|b|≤1;(2)當(dāng)|x|≤1時,|ax+b|≤2。=82(2)a2a24aa+3+8+8=2a8+82a≤282a=82a842=2令 g(b)=b24b+11232 ≥32 g(b)=(b2)2+中天教育咨詢電話:04768705333第3頁/共9頁 金牌師資,笑傲高考∵ 3222013年數(shù)學(xué)VIP講義∴ g(b)f(a)注:本題實(shí)際上利用了不等式的傳遞性,只不過中間量為常數(shù)而已,這種思路在兩數(shù)大小比較時曾講過。在ab0條件下,不等式組顯然成立 ∴ 原不等式成立 【例8】 已知f(x)=24xx+3+8,求證:對任意實(shí)數(shù)a,b,恒有f(a),采用常規(guī)方法難以著手。239。239。238。(a+b)4a即要證237。a+b2ab=a+b2ab2b)(a(a+=(a2b)2ab=(a+b)b)(a8a2所證不等式可化為∵ ab0 ∴ ab ∴ ab0b)2(a2b)2(a+b)(a8b2b)2∴ 不等式可化為:(a+4ab)21(a+4bb)22236。故考慮用分析法證明,即執(zhí)果索因,尋找使不等式成立的必要條件?!纠?】 已知ab0,求證:(ab)8a2a+b2ab(ab)8b2。換元有下列三種途徑:途徑1:用均值換元法消元: 令 x=2a2+m,y=aa22m22則 x+y=(+m)+(m)=2m+222aa22≥a22途徑2:代入消元法: y=ax,0a2)2+a22≥a22中天教育咨詢電話:04768705333第2頁/共9頁 金牌師資,笑傲高考途徑3:三角換元法消元:令 x=acos2θ,y=asin2θ,θ∈(0,]2p2013年數(shù)學(xué)VIP講義則 x2+y2=a2(cos4θ+sin4θ)=a2[(sin2θ+cos2θ)22sin2θcos2θ]=a[12(sin2θ)]=a(12212212sin2θ)≥a22注:為了達(dá)到消元的目的,途徑1和途徑3引入了適當(dāng)?shù)膮?shù),也就是找到一個中間變量表示x,y?!?x+y22≤2x2+y222∴ x+y≥(x+y)2=a22思路二:因所求不等式右邊為常數(shù),故可從求函數(shù)最小值的角度去思考?!纠?】 x,y為正實(shí)數(shù),x+y=a,求證:x+y≥2a22。為了達(dá)到目的,應(yīng)在系數(shù)上作調(diào)整。注意到從左向右,分式變成了整式,可考慮在左邊每一個分式后配上該分式的分母,利用二元基本不等式后約去分母,再利用不等式可加性即可達(dá)到目的。(1)不等式的結(jié)構(gòu)與例4完全相同,處理方法也完全一樣。左=12(2a4+2b224+2c)=22412[(a24+b)+(b22244+c)+(c2244+a)]24≥12(2ab+2bc+2ca)=ab+bc+ca2發(fā)現(xiàn)縮小后沒有達(dá)到題目要求,此時應(yīng)再利用不等式傳遞性繼續(xù)縮小,處理的方法與剛才類似。不等號右邊為三項和,根據(jù)不等號方向,應(yīng)自左向右運(yùn)用基本不等式后再同向相加。bca=bc=ab+(ab)(ac)a0bcacaAB=a+d(b+c)=a+ =ab c(ab)a【例4】 a,b,c∈R,求證:a4+b4+c4≥(a+b+c)。關(guān)鍵是消去哪個字母,因條件中已知a的不等關(guān)系:ab,ac,ad,故保留a,消b,c,d中任一個均可。因A、B的表達(dá)形式比較簡單,故作差后如何對因式進(jìn)行變形是本題難點(diǎn)之一。N*.n33(Ⅰ)求a2的值;a2=4(Ⅱ)求數(shù)列{an}的通項公式;an=n2(Ⅲ)證明:對一切正整數(shù)n,有數(shù)學(xué)歸納法證明不等式16.(本小題滿分12分)若不等式11++n+1n+2+1a對一切正整數(shù)n都成立,求正3n+12411++a1a2+17.an4整數(shù)a的最大值,并證明結(jié)論.25:.第四篇:不等式證明經(jīng)典金牌師資,笑傲高考2013年數(shù)學(xué)VIP講義【例1】 設(shè)a,b∈R,求證:a2+b2≥ab+a+b1。n2{an}的前n項和為Sn,滿足4Sn=ann206。3180。3+11180。21180。R,x0,y0,且x+y2。0,求證:f(ab)|a|f().10.(本小題滿分10分)當(dāng)a,b206。(Ⅰ)解不等式f(x)+f(x+4)179。179。a+b+,b,c206。+a,b206。1的解集。3;a2b2c2++179。)114+179。1++165。x2y+xy2;(2+對滿足x+y+z=1的一切正實(shí)數(shù) x,y,z恒成立,求實(shí)數(shù)a的取值范圍.165。數(shù)形結(jié)合來研究問題是數(shù)學(xué)中常用的方法,若求證的不等式是幾何不等式或有較明顯的幾何意義時,可以考慮構(gòu)造相關(guān)幾何圖形來完成,若運(yùn)用得好,有時則有神奇的功效。注意:用放縮法證明數(shù)列不等式,關(guān)鍵是要把握一個度,如果放得過大或縮得過小,就會導(dǎo)致解決失敗。欲證A≥B,可將B適當(dāng)放大,即B1≥B,只需證明A≥B1。注意:在不等式的證明中運(yùn)用換元法,能把高次變?yōu)榈痛危质阶優(yōu)檎?,無理式變?yōu)橛欣硎剑芎喕C明過程。當(dāng)a0(或0(或二、部分方法的例題換元法是數(shù)學(xué)中應(yīng)用最廣泛的解題方法之一。:利用二次函數(shù)的判別
點(diǎn)擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1