freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

抽屜原理范文合集-文庫吧資料

2024-10-28 13:05本頁面
  

【正文】 },{2,99},…,{50,51}。解:把初二學生的身高厘米數(shù)作為抽屜,共有抽屜160150+1=11(個)。所以至少有4個乒乓球盒里的乒乓球數(shù)目相同。把以上6種不同的放法當做抽屜,這樣剩下6463=1(只)乒乓球不管放入哪一個抽屜里的任何一個盒子里(除已放滿6只乒乓球的抽屜外),都將使該盒子中的乒乓球數(shù)增加1只,這時與比該抽屜每盒乒乓數(shù)多1的抽屜中的3個盒子里的乒乓球數(shù)相等。6=3(只),分別在每一份的3個盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3個盒子中放了1只乒乓球,3個盒中放了2只乒乓球……3個盒子中放了6只乒乓球。解:18個乒乓球盒,每個盒子里至多可以放6只乒乓球。解:因為493=3(10086+1)+1,即46=315+1,也就是說,把從100分至86分的15個分數(shù)當做抽屜,493=46(人)的成績當做物體,根據(jù)第二抽屜原理,至少有4人的分數(shù)在同一抽屜中,即成績相同。求證:在這9名中至少有3名用同一種語言通話。為了保證生產(chǎn),要對這8名工人進行培訓,每人學一種機器的操作方法稱為一輪??偣灿?個工人在這條流水線上工作。已知任何兩個委員不會同時開兩次或更多的會議。7的方格表中,有11個白格,證明(1)若僅含一個白格的列只有3列,則在其余的4列中每列都恰有兩個白格;(2)只有一個白格的列只有3列。”請問王老師說得對嗎?為什么?,18個乒乓球盒,每個盒子里最多可以放6只乒乓球,至少有幾個/ 7乒乓球盒子里的乒乓球數(shù)目相同?,且都不大于160厘米,不小于150厘米。練習13(1)班有49名學生。另一方面,若9個人的答案如下表所示,則每3人都至少有一個問題的答案互不相同。于是,對于這3人來說,沒有一道題目的答案是互不相同的,這不符合題目的要求。對于這5人關(guān)于第三題應用第二抽屜原理知,可以選出4人,他們關(guān)于第三題的答案只有兩種可能。去掉這組學生,在余下的學生中,定有7人對第一題的答案只有兩種。問:參加考試的學生最多有多少人?解:設每題的三個選擇分別為a,b,c。例12 試卷上共有4道選擇題,每題有3個可供選擇的答案。用藍、黃兩色涂3個小方格,由抽屜原理知,至少有2個方格是同色的,無論是同為藍色或是同為黃色,都可以得到一個四角同色的長方形。不妨設這3個小方格就在第二行的前面3格。再考慮第二行的前四列,這時也有兩種可能:(1)這4格中,至少有2格被涂上藍色,那么這2個涂上藍色的小方格和第一行中與其對應的2個小方格便是一個長方形的四個角,這個長方形四角同是藍色。我們先考慮這個37的長方形的第一行。這有兩種可能:(1)這三行中,至少有一行,其前面10個小方格中,至少有2個小方格是涂有紅色的,那么這2個小方格和第一行中與其對應的2個小方格,便是一個長方形的四個角,這個長方形就是一個四角同是紅色的長方形。證明:我們先考察第一行中28個小方格涂色情況,用三種顏色涂28個小方格,由抽屜原理知,至少有10個小方格是同色的,不妨設其為紅色,還可設這10個小方格就在第一行的前10列。例11 設有428的方格棋盤,將每一格涂上紅、藍、黃三種顏色中的任意一種。/ 7另一方面,990把鑰匙已經(jīng)足夠了,這只要將90把不同的鑰匙分給90個人,而其余的10名旅客,每人各90把鑰匙(每個房間一把),那么任何90名旅客返回時,都能按要求住進房間。這2000組和中必至少有一組和大于或等于但因每一個和都是整數(shù),故有一組相鄰三數(shù)之和不小于2999,亦即存在一個點,與它緊相鄰的兩點和這點上所標的三數(shù)之和不小于2999。解:設圓周上各點的值依次是a1,a2,…,a2000,則其和a1+a2+…+a2000=0+1+2+…+1999=1999000。例9 圓周上有2000個點,在其上任意地標上0,1,2,…,1999(每一點只標一個數(shù),不同的點標上不同的數(shù))。我們知道n個數(shù)a1,a2,…,an的和與n的商是a1,a2,…,an這n個數(shù)的平均值。無論甲第一次將哪3條棱涂紅,由抽屜原理知四組中必有一組的3條棱全未涂紅,而乙只要將這組中的3條棱涂綠,甲就無法將某一面的4條棱全部涂紅了。問:甲是否一定能將某一面的4條棱全部涂上紅色?解:不能。例8 甲、乙二人為一個正方形的12條棱涂紅和綠2種顏色。分析:將這個問題加以轉(zhuǎn)化:如右圖,將同色的3個籌碼A,B,C置于圓周上,看是否能用另外2個籌碼將其隔開。這種情況一般可以表述為:/ 7第二抽屜原理:把(mn1)個物體放入n個抽屜,其中必有一個抽屜中至多有(m1)個物體。將41個紅籌碼看做蘋果,放入以上20個抽屜中,因為41=220+1,所以至少有一個抽屜中有2+1=3(個)蘋果,也就是說必有一組5個籌碼中有3個紅色籌碼,而每組的5個籌碼在圓周上可看做兩兩等距,且每2個相鄰籌碼之間都有19個籌碼,那么3個紅色籌碼中必有2個相鄰(這將在下一個內(nèi)容——第二抽屜原理中說明),即有2個紅色籌碼之間有19個籌碼。解:依順時針方向?qū)⒒I碼依次編上號碼:1,2,…,100。例6 在圓周上放著100個籌碼,其中有41個紅的和59個藍的。問:最少要生產(chǎn)多少個盤子,才能保證一定能從中挑出符合要求的兩只盤子?解:把20~:第1組:;第2組:;……第20組:。角就有一次滾珠相對的局面出現(xiàn),轉(zhuǎn)動一周共有8次滾珠相對的局面,而最初的8對滾珠所標數(shù)字都不相同,所以數(shù)字相同的滾珠相對的情況只出現(xiàn)在以后的7次轉(zhuǎn)動中,將7次轉(zhuǎn)動看做7個抽屜,8次相同數(shù)字滾珠相對的局面看做8個蘋果,則至少有2次數(shù)字相對的局面出現(xiàn)在同一次轉(zhuǎn)動中,即必有某一時刻,內(nèi)外兩環(huán)中至少有兩對數(shù)字相同的滾珠相對。將這8次局面看做蘋果,再需構(gòu)造出少于8個抽屜。解:內(nèi)外兩環(huán)對轉(zhuǎn)可看成一環(huán)靜止,只有一個環(huán)轉(zhuǎn)動。當兩個圓環(huán)按不同方向轉(zhuǎn)動時,必有某一時刻,內(nèi)外兩環(huán)中至少有兩對數(shù)字相同的滾珠相對。因為禮堂中任意4人可看做4個蘋果,放入A,B,C三個抽屜中,必有2人在同一抽屜,即必有2人來自同一組,那么他們認識的人只在另2組中,因此他們兩人不相識。解:將禮堂中的99人記為a1,a2,…,a99,將99人分為3組:(a1,a2,…,a33),(a34,a35,…,a66),(a67,a68,…,a99),將3組學生作為3個抽屜,分別記為A,B,C,
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1