【摘要】空間向量的正交分解及其坐標表示【學習目標】⒈了解空間向量基本定理及其推論;⒉理解空間向量的基底、基向量的概念.理解空間任一向量可用空間不共面的三個已知向量唯一線性表示奎屯王新敞新疆【自主學習】空間向量基本定理與平面向量基本定理類似,區(qū)別僅在于基底中多了一個向量,從而分解結(jié)果中多了一“項”.證明的思路、步驟也基本相同.我們
2024-12-13 06:40
【摘要】a、b、c是任意的非零平面向量,且它們相互不共線,下列命題:①(a·b)c-(c·a)b=0;②|a|-|b||a-b|;③(b·a)c-(c·a)b不與c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中
【摘要】a,b是不共線的兩個向量,λ,μ∈R,且λa+μb=0,則()A.λ=μ=0B.a(chǎn)=b=0C.λ=0,b=0D.μ=0,a=0解析:選A.∵a,b不共線,∴a,b為非零向量,又∵λa+μb=0,∴λ=μ=
【摘要】句是命題的是()A.2021是一個大數(shù)B.若兩直線平行,則這兩條直線沒有公共點C.對數(shù)函數(shù)是增函數(shù)嗎D.a(chǎn)≤15解析:選、D不能判斷真假,不是命題;B能夠判斷真假而且是陳述句,是命題;C是疑問句,不是命題.()A.互余的兩個角不相等B.相等的兩個角是同位角
2024-12-13 06:41
【摘要】§3.空間向量的正交分解及其坐標表示知識點一向量基底的判斷已知向量{a,b,c}是空間的一個基底,那么向量a+b,a-b,c能構(gòu)成空間的一個基底嗎?為什么?解∵a+b,a-b,c不共面,能構(gòu)成空間一個基底.假設a+b,a-b,c共面,則存在x,
2024-12-16 01:49
【摘要】解及其坐標表示lαOP例1在平面內(nèi)的一條直線,如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
2024-11-26 12:14
【摘要】l:x+y-3=0及曲線C:(x-3)2+(y-2)2=2,則點M(2,1)()A.在直線l上,但不在曲線C上B.在直線l上,也在曲線C上C.不在直線l上,也不在曲線C上D.不在直線l上,但在曲線C上解析:選x=2,y=1代入直線l:x+y-3
【摘要】1.(2021·高考陜西卷)設拋物線的頂點在原點,準線方程為x=-2,則拋物線的方程是()A.y2=-8xB.y2=-4xC.y2=8xD.y2=4x解析:選x=-2,可知拋物線為焦點在x軸正半軸上的標準方程,同時得p=4,所以標準方程為y2=2px=
2024-11-26 11:25
【摘要】x2-y2=4的焦點且垂直于實軸的直線與雙曲線交于A,B兩點,則AB的長為()A.2B.4C.8D.42解析:選x2-y2=4的焦點為(±22,0),把x=22代入并解得y=±2,∴|AB|=2-(-2)=4.2.(2
【摘要】空間向量的正交分解及其坐標表示【學習目標】1.掌握空間向量的正交分解及空間向量基本定理和坐標表示;2.掌握空間向量的坐標運算的規(guī)律;【重點難點】空間向量的正交分解及空間向量基本定理和坐標表示【學習過程】一、自主預習(預習教材P92-96找出疑惑之處)復習1:平面向量基本定理:對平面上的任意一個向
2024-11-27 17:32
【摘要】1北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2如圖,設i,j,k是空間三個兩兩垂直的向量,且有公共起點O。對于空間任意一個向量p=OP,設點Q為點P在i,j所確定的平面上的正投影,由平面基本定理可知,在OQ,k所確定的平面上,存在實數(shù)z,使得OP=OQ
2024-11-26 13:29
【摘要】1.(2021·唐山調(diào)研)將“x2+y2≥2xy”改寫成全稱命題,下列說法正確的是()A.?x,y∈R,都有x2+y2≥2xyB.?x0,y0∈R,使x20+y20≥2x0y0C.?x0,y0,都有x2+y2≥2xyD.?x00,y00
【摘要】1.“ab”是“a|b|”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件解析:選a|b|?ab,而ab?/a|b|.2.(2021·高考天津卷)設集合A={x∈R|x-20},B={x
【摘要】l的方向向量,平面α的法向量分別是a=(3,2,1),u=(-1,2,-1),則l與α的位置關系是()A.l⊥αB.l∥αC.l與α相交但不垂直D.l∥α或l?α解析:選D.∵a·u=-3+4-1=0,∴a⊥u,