【摘要】a·b=|a||b|cosθ向量數(shù)量積的定義是?向量與自身的內(nèi)積為?兩個(gè)單位向量的數(shù)量積等于?向量長度的平方它們之間夾角的余弦函數(shù)值思考?yxoP1βP2α在直角坐標(biāo)系中,以原點(diǎn)為中心,單位長度為半徑作單位圓,以原點(diǎn)為頂點(diǎn),x軸為始邊分別作角任意α,β與單位圓交于
2024-11-25 15:05
【摘要】數(shù)學(xué):“兩角差的余弦公式”教學(xué)設(shè)計(jì)一、教學(xué)內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)和交匯點(diǎn)上,是前面所學(xué)三角函數(shù)知識(shí)的繼續(xù)與發(fā)展,是培養(yǎng)學(xué)生推理能力和運(yùn)算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎(chǔ)和出發(fā)點(diǎn),公式的發(fā)現(xiàn)和證明是本節(jié)課的重點(diǎn),也是難點(diǎn).由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2024-11-26 21:26
【摘要】兩角和與差的正弦、余弦函數(shù)一.教學(xué)目標(biāo):(1)能夠推導(dǎo)兩角差的余弦公式;(2)能夠利用兩角差的余弦公式推導(dǎo)出兩角差的正弦公式、兩角和的正、余弦公式;(3)能夠運(yùn)用兩角和的正、余弦公式進(jìn)行化簡、求值、證明;(4)揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣;(5)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí).:通過創(chuàng)設(shè)情境:
2024-12-13 06:38
【摘要】【金榜教程】2021年高中數(shù)學(xué)&兩角差的余弦函數(shù)兩角和與差的正玄余玄函數(shù)檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)1.(20212長春高一檢測)sin14°cos16°+sin76°cos74°的值是()(A)32
2024-12-11 03:13
【摘要】兩角和與差的余弦一、知識(shí)掃描cos(α-β)=二、課堂探究1.探究?coscos)cos(???????2.探究cos(???)的公式思考?.1角函數(shù)線來探求公式怎樣聯(lián)系單位圓上的三(1)怎樣構(gòu)造角?和角????(注意:要與它們
2024-12-10 10:14
【摘要】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
2024-12-13 10:15
【摘要】兩角和與差的正弦一、填空題1.sin245°sin125°+sin155°sin35°的值是________.2.若銳角α、β滿足cosα=45,cos(α+β)=35,則sinβ的值是________.3.已知cosαcosβ-sinαsin
【摘要】兩角和與差的余弦函數(shù)(一)教學(xué)目標(biāo):1、知識(shí)目標(biāo):(1)利用向量的數(shù)量積去發(fā)現(xiàn)兩角差的余弦公式;2)靈活正反運(yùn)用兩角差的余弦。2、能力目標(biāo):(1)通過求兩個(gè)向量的夾角,發(fā)現(xiàn)兩角差的余弦,培養(yǎng)學(xué)生融會(huì)貫通的能力。(2)培養(yǎng)學(xué)生注重知識(shí)的形成過程。3、情感目標(biāo):通過公式的推導(dǎo),更進(jìn)一步發(fā)現(xiàn)“向量”的強(qiáng)大作用。
2024-11-27 23:18
【摘要】課題:兩角和與差的正弦、余弦班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】;【課前預(yù)習(xí)】1、兩角和的余弦公式:.__________________)cos(????兩角差的余弦公式:.___________
2024-12-13 00:28
【摘要】兩角差的余弦公式教學(xué)目的:經(jīng)歷用向量數(shù)量積推導(dǎo)出兩角差的余弦公式的過程,進(jìn)一步體會(huì)向量方法的作用;掌握兩角差的余弦公式的結(jié)構(gòu)特征,并會(huì)應(yīng)用。教學(xué)重點(diǎn):兩角差的余弦公式結(jié)構(gòu)及其應(yīng)用教學(xué)難點(diǎn):兩角差的余弦公式的推導(dǎo)。教學(xué)過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-16 22:40
【摘要】19:29:2419:29:24一、新課引入問題1:cos15°=?問題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2024-11-25 19:44
【摘要】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)函數(shù)第1課時(shí)課后訓(xùn)練北師大版必修4"1.已知tanθ=13,則cos2θ+12sin2θ的值為().A.65?B.65C.45?D.452.若x∈3,4
【摘要】陜西省榆林育才中學(xué)高中數(shù)學(xué)第3章《三角恒等變形》2兩角和與差的的正切函數(shù)導(dǎo)學(xué)案北師大版必修4【學(xué)習(xí)目標(biāo)】1.能根據(jù)兩角和與差的正弦、余弦公式得出兩角和與差的正切公式,提升轉(zhuǎn)化能力與分析問題的能力.2.能熟練應(yīng)用公式解決簡單的三角函數(shù)式的化簡、
2024-11-27 20:36
【摘要】陜西省榆林育才中學(xué)高中數(shù)學(xué)第1章《三角函數(shù)》4任意角的正弦函數(shù)、余弦函數(shù)的定義導(dǎo)學(xué)案北師大版必修4【學(xué)習(xí)目標(biāo)】1.利用單位圓認(rèn)識(shí)和理解正弦函數(shù)、余弦函數(shù)的概念,并能根據(jù)定義判定正弦函數(shù)、余弦函數(shù)的符號(hào).2.利用單位圓研究正弦函數(shù)、余弦函數(shù)的周期性.3.通過借助單位圓討論正弦函數(shù)、余弦函數(shù)的過程,進(jìn)一步加深對數(shù)形結(jié)合思想
2024-11-27 23:19
【摘要】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)像與性質(zhì)課后訓(xùn)練北師大版必修4"1.函數(shù)y=2cosx+12的值域是().A.[-1,1]B.[-2,2]C.35,22???????D.R2.函數(shù)3cos23yx?????????的遞減區(qū)間是
2024-12-11 03:15