【摘要】方程的根與函數(shù)的零點(diǎn)方程解法史話(huà):數(shù)學(xué)家方臺(tái)納的故事1535年,在意大利有一條轟動(dòng)一時(shí)的新聞:數(shù)學(xué)家?jiàn)W羅挑戰(zhàn)數(shù)學(xué)家方臺(tái)納,奧羅給方臺(tái)納出了30道題,求解x3+5x=10,x3+7x=14,x3+11x=20,……;諸如方程x3+Mx=N,M,N是正整數(shù),比賽時(shí)間為20天,方臺(tái)納埋頭苦干,終于在最后一天解決了這個(gè)問(wèn)題。方程的求解經(jīng)
2024-11-17 04:14
【摘要】方程的根和函數(shù)的零點(diǎn)思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函
2024-10-19 16:46
【摘要】第二課時(shí)方程的根與函數(shù)的零點(diǎn)(習(xí)題課)方程的根與函數(shù)的零點(diǎn)知識(shí)回顧?y=f(x)有零點(diǎn)有哪些等價(jià)說(shuō)法?函數(shù)y=f(x)有零點(diǎn)方程f(x)=0有實(shí)數(shù)根函數(shù)y=f(x)的圖象與x軸有公共點(diǎn).對(duì)于函數(shù)y=f(x),使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn)
2024-12-02 16:55
【摘要】1《方程的根與函數(shù)的零點(diǎn)》的教學(xué)設(shè)計(jì)湖北省黃岡市團(tuán)風(fēng)中學(xué)胡建平教材分析本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教課書(shū)數(shù)學(xué)I必修本(A版)》的第三章的根與函數(shù)的的零點(diǎn)。函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,既是初等數(shù)學(xué)的基礎(chǔ),又是出等數(shù)學(xué)與高等數(shù)學(xué)的連接紐帶。在現(xiàn)實(shí)生活實(shí)踐中,函數(shù)與方程都有著十分的應(yīng)用,在注重理論與實(shí)踐相結(jié)合的今天,
2024-11-29 04:35
【摘要】思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?我們知道,令一個(gè)一元二次函數(shù)2(0)yaxbxca????的函數(shù)值y=0,則得到一元二次方程20(0)axbxca????問(wèn)題1觀(guān)察下表(一),說(shuō)出表中一元二次方程的實(shí)數(shù)根與相應(yīng)
2024-11-17 08:08
【摘要】哪里有數(shù),哪里就有美代數(shù)是搞清楚世界上數(shù)量關(guān)系的智力工具數(shù)學(xué)是科學(xué)的大門(mén)和鑰匙問(wèn)題1:2x-1=0與y=2x-1它們的含義分別如何?2x-1=0的根與函數(shù)y=2x-1的圖
2025-08-07 14:39
【摘要】思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?我們知道,令一個(gè)一元二次函數(shù)2(0)yaxbxca????的函數(shù)值y=0,則得到一元二次方程20(0)axbxca????問(wèn)題1觀(guān)察下表(一),說(shuō)出表中一元二次方程的實(shí)
2024-11-20 18:12
【摘要】函數(shù)與方程方程的根與函數(shù)的零點(diǎn)(1)思考??一元二次方程ax2+bx+c=0(a?0)的根與二次函數(shù)y=ax2+bx+c(a?0)的圖象有什么關(guān)系??先來(lái)觀(guān)察幾個(gè)具體的一元二次方程及其相應(yīng)的二次函數(shù),如:–x2-2x-3=0與y=x2-2x-3–x2-2x+1=0與y=x2-2x+1–x
2024-11-25 18:06
【摘要】學(xué)習(xí)內(nèi)容:【課程學(xué)習(xí)目標(biāo)】1.知識(shí)與技能:(1)了解函數(shù)零點(diǎn)的概念:能夠結(jié)合具體方程說(shuō)明方程的根、函數(shù)的零點(diǎn)、函數(shù)圖象與x軸的交點(diǎn)三者的關(guān)系;(2)理解函數(shù)零點(diǎn)存在性定理:了解圖象連續(xù)不斷的意義及作用;知道定理只是函數(shù)存在零點(diǎn)的一個(gè)充分條件;了解函數(shù)零點(diǎn)可能不止一個(gè);矚慫潤(rùn)厲釤瘞睞櫪廡賴(lài)賃軔朧礙鱔絹。(3)能利用函數(shù)圖象和性質(zhì)判斷某些函數(shù)的零點(diǎn)個(gè)數(shù),及所在區(qū)間.
2025-06-29 21:17
【摘要】《方程的根與函數(shù)的零點(diǎn)》教學(xué)設(shè)計(jì)及教學(xué)反思一、背景分析1、學(xué)習(xí)任務(wù)分析函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,既是初等數(shù)學(xué)的基礎(chǔ),又是初等數(shù)學(xué)與高等數(shù)學(xué)的連接紐帶。?原因是要用函數(shù)的觀(guān)點(diǎn)統(tǒng)帥中學(xué)數(shù)學(xué),,解方程的問(wèn)題就變成了求函數(shù)的零點(diǎn)問(wèn)題.就本章而言,本節(jié)通過(guò)對(duì)二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個(gè)數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點(diǎn)的聯(lián)系,然后由
2025-04-25 05:40
【摘要】方程的根與函數(shù)的零點(diǎn)班級(jí):__________姓名:__________設(shè)計(jì)人__________日期__________課前預(yù)習(xí)·預(yù)習(xí)案【溫馨寄語(yǔ)】高尚的理想是人生的指路明燈。有了它,生活就有了方向;有了它,內(nèi)心就感到充實(shí)。邁開(kāi)堅(jiān)定的步伐,走向既定的目標(biāo)吧!【學(xué)習(xí)目標(biāo)】1.能利用函數(shù)圖象和性質(zhì)判斷某些函數(shù)的零點(diǎn)
2024-12-16 22:40
【摘要】函數(shù)與方程一、考點(diǎn)聚焦1.函數(shù)零點(diǎn)的概念對(duì)于函數(shù),我們把使的實(shí)數(shù)x叫做函數(shù)的零點(diǎn),注意以下幾點(diǎn):(1)函數(shù)的零點(diǎn)是一個(gè)實(shí)數(shù),當(dāng)函數(shù)的自變量取這個(gè)實(shí)數(shù)時(shí),其函數(shù)值等于零。(2)函數(shù)的零點(diǎn)也就是函數(shù)的圖象與x軸的交點(diǎn)的橫坐標(biāo)。(3)一般我們只討論函數(shù)的實(shí)數(shù)零點(diǎn)。(4)求零點(diǎn)就是求方程的實(shí)數(shù)根。2、函數(shù)零點(diǎn)的判斷如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的曲線(xiàn),并且有,那么,
2025-05-22 02:09
【摘要】復(fù)習(xí)回顧:f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)判別式方程ax2+bx+c=0的根函數(shù)y=ax2+bx+c的零點(diǎn)?>0兩不相等實(shí)根兩個(gè)零點(diǎn)?=0兩相等實(shí)根一個(gè)零點(diǎn)?<0沒(méi)有實(shí)根
2024-11-18 22:54
【摘要】學(xué)習(xí)目標(biāo)1理解零點(diǎn)的概念。2學(xué)會(huì)求函數(shù)的零點(diǎn)。3判斷零點(diǎn)所在區(qū)間。定義:對(duì)于函數(shù)y=f(x),使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn)。(一)函數(shù)的零點(diǎn)方程f(x)=0有實(shí)數(shù)根函數(shù)y=f(x)有零點(diǎn)等價(jià)關(guān)系函數(shù)y=f(x)的圖象與x軸有交點(diǎn)
2024-11-19 21:09
【摘要】利用導(dǎo)數(shù)研究方程的根和函數(shù)的零點(diǎn)5.(本小題滿(mǎn)分12分)已知函數(shù)且(I)試用含的代數(shù)式表示;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)令,設(shè)函數(shù)在處取得極值,記點(diǎn),證明:線(xiàn)段與曲線(xiàn)存在異于、的公共點(diǎn);5.解法一:(I)依題意,得由得(Ⅱ)由(I)得(故令,則或
2025-06-22 22:23