【摘要】ABCA1B1C1Myz3.2立體幾何中的向量方法——平行與垂直(1)【學(xué)習(xí)目標(biāo)】1.理解直線的方向向量和平面的法向量;2.會(huì)用待定系數(shù)法求平面的法向量;3.能用向量方法證明空間線線、線面、面面的平行與垂直關(guān)系.【自主學(xué)習(xí)】1、點(diǎn)的位置向量:2、直線的方向向量:3、平面的
2024-11-27 23:25
【摘要】第一課時(shí):§立體幾何中的向量方法(一)教學(xué)要求:向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用.掌握利用向量運(yùn)算解幾何題的方法,并能解簡(jiǎn)單的立體幾何問(wèn)題.教學(xué)重點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用.教學(xué)難點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用教學(xué)過(guò)程:一、復(fù)習(xí)引入1.用向量解決立體幾何中的一些典型問(wèn)題的基本思考方法是:⑴
2024-12-08 04:03
【摘要】空間“綜合”問(wèn)題向量法解立體幾何問(wèn)題的優(yōu)點(diǎn):1.思路容易找,甚至可以公式化;一般充分結(jié)合圖形發(fā)現(xiàn)向量關(guān)系或者求出(找出)平面的法向量、直線的方向向量,利用這些向量借助向量運(yùn)算就可以解決問(wèn)題.2.不需要添輔助線和進(jìn)行困難的幾何證明;3.若坐標(biāo)系容易建立,更是水到渠成.復(fù)習(xí)引入如圖,已知:
2024-11-26 12:14
【摘要】ZPZ空間“角度”問(wèn)題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個(gè)面的
2024-11-25 12:02
【摘要】ZPZ空間“距離”問(wèn)題一、復(fù)習(xí)引入用空間向量解決立體幾何問(wèn)題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問(wèn)題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量
【摘要】平面向量空間向量推廣到立體幾何問(wèn)題(研究的基本對(duì)象是點(diǎn)、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進(jìn)一步來(lái)體會(huì)向量這一工具在立體幾何中的應(yīng)用.前面,我們把。+=,使,實(shí)數(shù)對(duì)共面的充要條件是存在與向量不共線,則向量如果兩個(gè)向量byaxp
【摘要】立體幾何中的向量方法(1)【學(xué)習(xí)目標(biāo)】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問(wèn)題.【重點(diǎn)難點(diǎn)】直線的方向向量及平面的法向量【學(xué)習(xí)過(guò)程】一、自主預(yù)習(xí)(預(yù)習(xí)教材P102~P104,找出疑惑之處)復(fù)習(xí)1:
2024-11-27 20:38
【摘要】立體幾何中的向量方法(2)【學(xué)習(xí)目標(biāo)】1.掌握利用向量運(yùn)算解幾何題的方法,并能解簡(jiǎn)單的立體幾何問(wèn)題;2.掌握向量運(yùn)算在幾何中求兩點(diǎn)間距離和求空間圖形中的角度的計(jì)算方法.【重點(diǎn)難點(diǎn)】利用向量運(yùn)算解幾何題【學(xué)習(xí)過(guò)程】一、自主預(yù)習(xí)(預(yù)習(xí)教材P105~P107,找出疑惑之處.復(fù)習(xí)1:已知1ab??,1
2024-11-27 17:32
【摘要】立體幾何初步復(fù)習(xí)(三)---------空間角(一)知識(shí)回顧,整體認(rèn)識(shí)1.異面直線所成角;定義:范圍:圖形2.直線與平面所成角;定義:范圍:圖形3.二面角.定義:圖形求解步驟:作——證——指——求——答(二)應(yīng)用舉例,深化鞏固△AB
2024-11-27 23:24
【摘要】立體幾何初步復(fù)習(xí)(二)1、如圖,在底面為平行四邊形的四棱錐PABCD?中,點(diǎn)E是PD的中點(diǎn).求證://PB平面AEC;2、如圖,在正方體ABCD-A1B1C1D1中,求證:面AB1D1∥面BDC1
2024-12-12 23:44
【摘要】空間向量及其運(yùn)算【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.理解空間向量的概念,掌握其表示方法;2.會(huì)用圖形說(shuō)明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.【重點(diǎn)】能用空間向量的運(yùn)算意義及運(yùn)算律解決
2024-11-26 16:52
【摘要】必修2立體幾何初步復(fù)習(xí)(一)一、點(diǎn)、直線、平面的位置關(guān)系(一)知識(shí)框圖,整體認(rèn)識(shí)(二)整合知識(shí),發(fā)展思維(1)空間點(diǎn)、線、面間的位置關(guān)系:公理1——判定直線是否在平面內(nèi)的依據(jù);①文字表述②圖形公理2——提供確定
2024-11-27 19:35
【摘要】【學(xué)習(xí)目標(biāo)】理解軌跡的定義,并能根據(jù)所給的條件,選擇恰當(dāng)?shù)闹苯亲鴺?biāo)系求曲線的軌跡方程,畫出方程所表示的曲線新疆學(xué)案王新敞【自主學(xué)習(xí)】我們已經(jīng)建立了曲線的方程、方程的曲線的概念。利用此概念就可以借助于坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線看成滿足某種條件的點(diǎn)的集合或軌跡,用曲線上點(diǎn)的坐標(biāo)(,)xy所滿足的方程(,)0fxy?表示曲線,
2024-12-13 06:41
【摘要】空間向量的數(shù)量積【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握空間向量夾角和模的概念及表示方法;2.掌握兩個(gè)向量的數(shù)量積的計(jì)算方法,并能利用兩個(gè)向量的數(shù)量積解決立體幾何中的一些簡(jiǎn)單問(wèn)題.3.掌握空間向量的正交分解及空間向量基本定理和坐標(biāo)表示;4.掌握空
2024-12-06 00:10
【摘要】空間向量的數(shù)乘運(yùn)算【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.【重點(diǎn)】能用空間向量的運(yùn)算意義