【摘要】§3解三角形的實際應用舉例(二)課時目標、余弦定理解決生產實踐中的有關高度的問題.、余弦定理及三角形面積公式解決三角形中的幾何度量問題.1.仰角和俯角:與目標視線在同一鉛垂平面內的水平視線和目標視線的夾角,目標視線在水平線____方時叫仰角,目標視線在水平線____方時叫俯角.(如圖所示)2.已知△ABC的兩邊
2024-12-12 23:43
【摘要】§3解三角形的實際應用舉例(2)教學目標1、掌握正弦定理、余弦定理,并能運用它們解斜三角形。2、能夠運用正弦定理、余弦定理進行三角形邊與角的互化。3、培養(yǎng)和提高分析、解決問題的能力。教學重點難點1、正弦定理與余弦定理及其綜合應用。2、利用正弦定理、余弦定理進行三角形邊與角的互化。教學過程一、復習引入
2024-12-08 05:16
【摘要】第5課時解三角形的實際應用、俯角、方向角、方位角等的含義.、余弦定理解決距離、高度、角度等的問題..中國的“海洋國土”面積約300萬平方公里,海洋權益在國家利益中的地位更加凸顯.近幾年,我國海軍先后參加了為打擊海盜進行的亞丁灣護航,并開始走出近海,深入遠海進行演習,實力在不斷增強,為護
2024-12-16 02:37
【摘要】第5課時解三角形的實際應用、俯角、方向角、方位角等的含義.、余弦定理解決距離、高度、角度等的問題..中國的“海洋國土”面積約300萬平方公里,海洋權益在國家利益中的地位更加凸顯.近幾年,我國海軍先后參加了為打擊海盜進行的亞丁灣護航,并開始走出近海,深入遠海進行演習,實力在不斷增強,為護衛(wèi)我們的“藍色國土”提供了
2024-11-25 17:04
【摘要】200米高的山頂上,測得山下一塔頂與塔底的俯角分別為30°、60°,則塔高為()米33米33米米解析:在△ABC中,AB=200米,∠ACB=60°,∴CB=ABtan60°=2020=20033米,
2024-11-24 15:37
【摘要】陜西省咸陽市涇陽縣云陽中學高中數學例導學案北師大版必修5【學習目標】,抽象或構造出三角形,標出已知量、未知量,確定解三角形的方法;2.搞清利用正余弦定理可解決的各類應用問題的基本圖形和基本等量關系.【學習重點】靈活應用正、余弦定理及三角恒等變換解決實際生活中與解三角形有關的問題?!臼褂谜f明】1.規(guī)范
2024-11-27 15:46
【摘要】南莫中學萬金圣求函數值域(最值)的常見方法有哪些?基礎練習1.()基礎練習的最值是發(fā)散思維的最值.有界判別數1形數2形發(fā)散思維的值域.解:-------------------------
2024-11-14 13:41
【摘要】§3解三角形的實際應用舉例教學目標1、掌握正弦定理、余弦定理,并能運用它們解斜三角形。2、能夠運用正弦定理、余弦定理進行三角形邊與角的互化。3、培養(yǎng)和提高分析、解決問題的能力。教學重點難點1、正弦定理與余弦定理及其綜合應用。2、利用正弦定理、余弦定理進行三角形邊與角的互化。教學過程一、復習引入
2024-11-27 08:01
【摘要】第6課時解三角形的綜合應用,深入理解正、余弦定理.、余弦定理與平面向量、三角恒等變換相結合的綜合性問題.我們學完了正弦定理、余弦定理之后,又對正、余弦定理的應用舉例做了了解,如仰角、俯角、方位角這些涉及角度的問題,我們還會利用正、余弦定理處理與距離、高度有關的問題,其實這些問題都離不開解三角形,這節(jié)課我們就一起來研
2024-11-25 23:19
【摘要】北師大版解斜三角形復習、請回答下列問題(1)解斜三角形的主要理論依據是什么?正弦定理RCcBbAa2sinsinsin???余弦定理Abccbacos2222???Baccabcos2222???Cabbaccos2222???解斜三角形復習、請回答
2024-11-20 17:10
【摘要】BCA?運用正弦定理能解怎樣的三角形?(1)正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等,即②已知三角形的任意兩邊與其中一邊的對角.(2)正弦定理能解決的三角形類型①已知三角形的任意兩角及其一邊;sinsinsinabc==ABC復習回顧應用舉例解三角形的實際應
2025-08-01 02:58
【摘要】湖南省桃江四中高二數學《三角函數、平面向量、解三角形》練習題1時間:120分鐘滿分:150分姓名班級學號一、選擇題(每小題5分,共50分)()A. B. C. D.:,,,則與的夾角是() A. B. C. D.,且,則
2025-01-20 11:49
【摘要】鳳凰出版?zhèn)髅郊瘓F版權所有網站地址:南京市湖南路1號B座808室聯系電話:025-83657815Mail:第8講三角變換與解三角形1.掌握三角函數的公式(同角三角函數關系式、誘導公式、和、差角及倍角公式)及應用;能正確運用三角公式進行簡單三角
2024-08-30 20:11
【摘要】..1.(新課標卷1理)(本小題滿分12分)如圖,在中,=90°,,,為內一點,=90°(Ⅰ)若,求;(Ⅱ)若=150°,求.2.(新課標卷2理)(本小題滿分12分)的內角的對邊分別為已知(Ⅰ)求;(Ⅱ)若=2,求的面積的最大值。3.(全國卷理文)
2025-08-11 02:47