【摘要】aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0復(fù)習(xí):函數(shù)單調(diào)性與導(dǎo)數(shù)關(guān)系如果在某個(gè)區(qū)間內(nèi)恒有,則為常數(shù).0)(??xf)(xf設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)可導(dǎo),f(
2024-11-25 12:02
【摘要】舜耕中學(xué)高一數(shù)學(xué)選修1—1導(dǎo)學(xué)案(教師版)編號(hào)20等級(jí):周次上課時(shí)間月日周課型新授課主備人胡安濤使用人課題教學(xué)目標(biāo),求函數(shù)單調(diào)區(qū)間,證明單調(diào)性。教學(xué)重點(diǎn)會(huì)熟練用求導(dǎo),求函數(shù)單調(diào)區(qū)間,會(huì)從導(dǎo)數(shù)的角度解釋增減及增減快慢的情況教學(xué)難點(diǎn)證
2024-12-16 01:49
【摘要】《導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用-函數(shù)的和差積商的導(dǎo)數(shù)教學(xué)目標(biāo)?熟練運(yùn)用導(dǎo)數(shù)的函數(shù)的和差積商運(yùn)算法則,并能靈活運(yùn)用?教學(xué)重點(diǎn):熟練運(yùn)用導(dǎo)數(shù)的四則運(yùn)算法則?教學(xué)難點(diǎn):商的導(dǎo)數(shù)的運(yùn)用由定義求導(dǎo)數(shù)(三步法)步驟:;)()()2(00xxfxxfxy???????算比值.lim)3(0xyyx?
2024-11-26 12:15
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用——極大值與極小值一般地,設(shè)函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系知識(shí)回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2024-11-25 23:31
【摘要】幾種常見(jiàn)函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過(guò)曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動(dòng)過(guò)程中,在某時(shí)刻的瞬時(shí)速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個(gè)統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實(shí)踐,又服務(wù)于實(shí)踐.:(1)()
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,區(qū)間IA.?如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說(shuō)y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱(chēng)為y=f(x)的單調(diào)增區(qū)間.如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2
2024-11-26 08:56
【摘要】2020/12/242020/12/24???,??th,.,at,,規(guī)律導(dǎo)數(shù)的符號(hào)有什么變化地相應(yīng)特點(diǎn)此點(diǎn)附近的圖象有什么是多少呢在此點(diǎn)的導(dǎo)數(shù)函數(shù)那么距水面的高度最大高臺(tái)跳水運(yùn)動(dòng)員時(shí)我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'?
2024-11-25 05:49
【摘要】奎屯王新敞新疆知識(shí)回顧1、一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)可導(dǎo),則函數(shù)在該區(qū)間如果f′(x)0,如果f′(x)0,則f(x)為增函數(shù);則f(x)為減函數(shù).2、用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性時(shí)的步驟是:(1)(3)求
2024-11-26 08:47
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用單元測(cè)試一、選擇題1.下列函數(shù)在()??,∞∞內(nèi)為單調(diào)函數(shù)的是()A.2yxx??B.yx?C.xye??D.sinyx?答案:C2.函數(shù)lnyxx?在區(qū)間(01),上是()A.單調(diào)增函數(shù)B.單調(diào)減函數(shù)C.在10e
2024-12-10 10:14
【摘要】導(dǎo)數(shù)的概念引入:?在高臺(tái)跳水運(yùn)動(dòng)中,平均速度不能反映他在這段時(shí)間里運(yùn)動(dòng)狀態(tài),需要用瞬時(shí)速度描述運(yùn)動(dòng)狀態(tài)。我們把物體在某一時(shí)刻的速度稱(chēng)為瞬時(shí)速度.又如何求瞬時(shí)速度呢?平均變化率近似地刻畫(huà)了曲線在某一區(qū)間上的變化趨勢(shì).?如何精確地刻畫(huà)曲線在一點(diǎn)處的變化趨勢(shì)呢?)(2????ttth求:從
【摘要】函數(shù)的極值與導(dǎo)數(shù)(a,b)內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對(duì)x∈(a,b),如果
2024-11-26 12:13
【摘要】復(fù)習(xí)::到兩定點(diǎn)F1、F2的距離之和為常數(shù)(大于|F1F2|)的動(dòng)點(diǎn)的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點(diǎn)在X軸上時(shí)當(dāng)焦點(diǎn)在Y軸上時(shí))0(12222????babyax)0(12222????
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(2)孫學(xué)軍aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0復(fù)習(xí):函數(shù)單調(diào)性與導(dǎo)數(shù)關(guān)系如果在某個(gè)區(qū)間內(nèi)恒有,則為常數(shù).0)(??xf)(xf設(shè)函數(shù)y=f(x)在
2024-11-26 15:25
【摘要】函數(shù)的極值與導(dǎo)數(shù)aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0,那么函數(shù)y=f(x)在為這個(gè)區(qū)間內(nèi)的增函數(shù);如果在這個(gè)區(qū)
2024-11-26 12:08
【摘要】2020/12/252020/12/25?分的創(chuàng)立導(dǎo)致了微積期的研究數(shù)量的變化規(guī)律進(jìn)行長(zhǎng)我們可以對(duì)通過(guò)研究函數(shù)這些性質(zhì)常重要的或最小值等性質(zhì)是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時(shí)型化規(guī)律的重要數(shù)學(xué)模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會(huì)導(dǎo)數(shù)在研究函從中你的性質(zhì)我們運(yùn)用導(dǎo)數(shù)研究函數(shù)下面2020
2024-11-26 12:09