【摘要】微積分基本定理【教學(xué)目標(biāo)】,會求簡單的定積分,體會微積分定理的優(yōu)越性;,感受極限的思想;“質(zhì)量互變、對立統(tǒng)一”的觀點(diǎn).【教學(xué)重點(diǎn)】定理的應(yīng)用【教學(xué)難點(diǎn)】定理的推導(dǎo)一、課前預(yù)習(xí):(閱讀教材40—41頁)微積分定理:如果,且)(xf在],[ba上可積,則??badxxf)(
2024-12-11 11:30
【摘要】導(dǎo)數(shù)及其應(yīng)用第一章定積分與微積分基本定理第2課時(shí)微積分基本定理第一章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)火箭要把運(yùn)載物發(fā)送到預(yù)定軌道是極其復(fù)雜的過程,至少涉及變力做功問題,有諸如“曲邊梯形”面積計(jì)算、變速直線運(yùn)動的位移計(jì)算等問題,應(yīng)如何解決?能否將
2024-11-26 01:21
【摘要】??,1,.,,211033dxxdxxxxf???例如分對于有些定積卻比較麻煩的值計(jì)算但直接用定積分的定義非常簡單雖然被積函數(shù)現(xiàn)從前面的學(xué)習(xí)中可以發(fā).dxx121?定義計(jì)算請你嘗試?yán)枚ǚe分幾乎不可能.??,,?,.和定積分的聯(lián)系我們先來探究
2024-11-26 12:13
【摘要】微積分基本定理定理(微積分基本定理)如果()fx是在區(qū)間],[ba上的連續(xù)函數(shù),并且()(),Fxfx??,則)()()(aFbFdxxfba???.記:()()()|baFbFaFx??則:()()|()()bbaafxdxFxF
2024-11-25 12:01
【摘要】§2微積分基本定理雙基達(dá)標(biāo)?限時(shí)20分鐘?1.(1+cosx)dx等于().A.πB.2C.π-2D.π+2解析∵(x+sinx)′=1+cosx,=π2+sinπ2-??????-π2+sin(-π2)
2024-12-08 11:35
【摘要】復(fù)習(xí):合情推理?歸納推理從特殊到一般?類比推理從特殊到特殊從具體問題出發(fā)觀察、分析比較、聯(lián)想提出猜想歸納類比觀察與是思考,2整除,,銅能夠?qū)щ?銅是金屬,
2024-11-26 15:24
【摘要】-歸納推理歌德巴赫猜想:“任何一個(gè)不小于6的偶數(shù)都等于兩個(gè)奇數(shù)之和”即:偶數(shù)=奇質(zhì)數(shù)+奇質(zhì)數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學(xué)難題之一。哥德巴赫是德國一位中學(xué)教師,也是一位著名的數(shù)學(xué)家,生于1690年,1725年當(dāng)選為俄國彼得堡科學(xué)院院士。1742年,哥德巴赫在教學(xué)中發(fā)現(xiàn),每個(gè)
【摘要】"福建省長樂第一中學(xué)2021高中數(shù)學(xué)第一章《微積分基本定理》教案新人教A版選修2-2"一:教學(xué)目標(biāo)知識與技能目標(biāo)通過實(shí)例,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分過程與方法通過實(shí)例體會用微積分基本定理求定積分的方法情感態(tài)度與價(jià)值觀通過微積分基本定
2024-12-13 06:42
【摘要】一:教學(xué)目標(biāo) 知識與技能目標(biāo) 通過實(shí)例,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分過程與方法通過實(shí)例體會用微積分基本定理求定積分的方法情感態(tài)度與價(jià)值觀通過微積分基本定理的學(xué)習(xí),體會事物間的相互轉(zhuǎn)化、對立統(tǒng)一的辯證關(guān)系,培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn),提高理性思維能力。二:教學(xué)重難點(diǎn) 重點(diǎn)通過探究變速直線運(yùn)動物體的速度與位移的關(guān)系,使學(xué)生
2025-06-13 23:07
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第4章2微積分基本定理課時(shí)作業(yè)北師大版選修2-2一、選擇題1.????-π2π2(1+cosx)dx等于()A.πB.2C.π-2D.π+2[答案]D[分析]利用微積分基本定理求定積分.
2024-12-13 06:27
【摘要】12.,??""""?."",.,;"",定積分學(xué)知識我們需要學(xué)習(xí)新的數(shù)為此直線運(yùn)動的問題速解決變的知識能否利用勻速直線運(yùn)動積面直邊圖形轉(zhuǎn)化為求面積曲邊圖形把求能否呢如何解決這些問題變力做功的問題物體位移、的面積、變速直線運(yùn)動曲邊圖形的平
【摘要】本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2Z=a+bi(a,b∈R)實(shí)部!虛部!復(fù)數(shù)的代數(shù)形式:一個(gè)復(fù)數(shù)由有序?qū)崝?shù)對(a,b)確定本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理3實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示。實(shí)數(shù)數(shù)軸上的點(diǎn)一一對應(yīng)(數(shù))(形)類比實(shí)數(shù)
【摘要】-類比推理,發(fā)明了鋸,發(fā)明了潛水艇.,發(fā)現(xiàn)火星與地球有許多類似的特征;1)火星也繞太陽運(yùn)行、饒軸自轉(zhuǎn)的行星;2)有大氣層,在一年中也有季節(jié)變更;3)火星上大部分時(shí)間的溫度適合地球上某些已知生物的生存,等等.科學(xué)家猜想;火星上也可
【摘要】§演繹推理小明是一名高二年級的學(xué)生,17歲,迷戀上網(wǎng)絡(luò),沉迷于虛擬的世界當(dāng)中。由于每月的零花錢不夠用,便向親戚要錢,但這仍然滿足不了需求,于是就產(chǎn)生了歹念,強(qiáng)行向路人搶取錢財(cái)。但小明卻說我是未成年人而且就搶了50元,這應(yīng)該不會很嚴(yán)重吧???情景創(chuàng)設(shè)1:生活中的例子如果你是法官,你會如何判決呢?小明到底是不是犯
【摘要】1復(fù)數(shù)的除法2復(fù)數(shù)除法的法則復(fù)數(shù)的除法是乘法的逆運(yùn)算,滿足(c+di)(x+yi)=(a+bi)(c+di≠0)的復(fù)數(shù)x+yi,叫做復(fù)數(shù)a+bi除以復(fù)數(shù)c+di的商,記作.a+bic+di3a+bic+di=(a+bi)(c-di)(c+di