【摘要】;能運用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力合問題.教學(xué)目標(biāo)計數(shù)原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-10-25 05:23
【摘要】解排列組合的問題一般的思考過程如下:元素放進位置(1)弄清楚要做什么事.(2)怎么做才能完要做的事.(熟悉兩個計數(shù)原理)即采取分步還是分類,或分步分類同時進行。(3)確定每一類或每一步是有序(排列)還是無序(組合)問題。元素總數(shù)多少,取多少個元素。(4)掌握一些常用的解題策略。常用的解題策略
2024-08-28 23:54
【摘要】本文格式為Word版,下載可任意編輯 排列組合常用方法總結(jié) 排列組合常用方法總結(jié) 總結(jié)就是對一個時期的學(xué)習(xí)、工作或其完成情況進行一次全面系統(tǒng)的回顧和分析的書面材料,它可以使我們更有效率,讓我...
2025-04-05 21:01
【摘要】解排列組合問題的常用策略從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.:從n個不同元素中,任取m個元素,并成一組,叫做從n個不同元素中取出m個元素的一個組合.:::)!(!)1()2)(1(mnnmnnnnAmn?
2025-03-09 11:21
【摘要】排列,組合問題的解答策略第四節(jié)相鄰問題捆綁法?例13:6名同學(xué)排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個??例15:計劃在某畫廊展開10幅不同的畫,
2024-11-18 22:56
2025-01-13 08:17
【摘要】例1,7名學(xué)生站成一排,甲已必須站在一起,有多少種方法?捆綁法:要求某幾個元素必須排在一起的問題,可以用捆綁法來解決問題。即將需要相鄰的元素合并為一個元素,再與其他元素一起作排列,同時要注意合并元素內(nèi)部也可以做排列。一般地:n個人站成一排,其中某m個人相鄰,可用“捆綁法”解決,共有種排法插入法:對
2024-11-17 13:22
2024-08-28 21:46
【摘要】排列組合應(yīng)用題解法綜述計數(shù)問題中排列組合問題是最常見的,由于其解法往往是構(gòu)造性的,因此方法靈活多樣,不同解法導(dǎo)致問題難易變化也較大,而且解題過程出現(xiàn)“重復(fù)”和“遺漏”的錯誤較難自檢發(fā)現(xiàn)。因而對這類問題歸納總結(jié),并把握一些常見解題模型是必要的?;驹斫M合排列排列數(shù)公式組合數(shù)
2024-08-28 22:10
【摘要】引入:前面我們已經(jīng)學(xué)習(xí)和掌握了排列組合問題的求解方法,下面我們要在復(fù)習(xí)、鞏固已掌握的方法的基礎(chǔ)上,學(xué)習(xí)和討論排列、組合的綜合問題。和應(yīng)用問題。問題:解決排列組合問題一般有哪些方法?應(yīng)注意什么問題?解排列組合問題時,當(dāng)問題分成互斥各類時,根據(jù)加法原理,可用分類法;當(dāng)問題考慮先后次序時,根據(jù)乘法原
2024-08-20 14:47
【摘要】一.特殊元素和特殊位置優(yōu)先策略二.相鄰元素捆綁策略三.不相鄰問題插空策略四.定序問題空位插入策略五.重排問題求冪策略六.多排問題直排策略七.排列組合混合問題先選后排策略八.小集團問題先整體后局部策略九.元素相同問題隔板策略十.正難則反總體淘汰策略十一.平均分組問題除法策略十二.合
2024-08-28 23:07
【摘要】名稱內(nèi)容分類原理分步原理定義相同點不同點兩個原理的區(qū)別與聯(lián)系:做一件事或完成一項工作的方法數(shù)直接(分類)完成間接(分步驟)完成做一件事,完成它可以有n類辦法,第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法…,第n類
2025-03-09 11:20
【摘要】排列組合綜合問題教學(xué)目標(biāo)通過教學(xué),學(xué)生在進一步加深對排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學(xué)會分類討論的思想.教學(xué)重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學(xué)用具投影儀.教學(xué)過程設(shè)計(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問題和組
2025-03-31 02:37
【摘要】排列組合方法一解決排列組合問題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2024-08-31 16:59
【摘要】.排列組合方法歸納大全解決排列組合綜合性問題的一般過程如下:,即采取分步還是分類,或是分步與分類同時進行,確定分多少步及多少類。(有序)還是組合(無序)問題,元素總數(shù)是多少及取出多少個元素.,往往類與步交叉,因此必須掌握一些常用的解題策略,1,2,3,4,5可以組成多少個沒有重復(fù)數(shù)字五位奇數(shù).練習(xí)題:7種不同的花種在排成一列的花盆里,若兩
2024-08-18 07:17