【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-19 21:09
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長(zhǎng)度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-18 08:35
【摘要】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個(gè)的向量,那么對(duì)于這一平面內(nèi)的任意向量a,一對(duì)實(shí)數(shù)λ1,λ2,使a=.其中
2024-11-20 16:44
【摘要】基礎(chǔ)自主回扣命題熱點(diǎn)突破知能綜合檢測(cè)目錄下一頁(yè)上一頁(yè)末頁(yè)首頁(yè)章首課前練習(xí):已知正△ABC的邊長(zhǎng)為2,圓O的半徑為1,PQ為圓O的任意一條直徑。(1)判斷的值是否會(huì)
2025-07-29 07:12
【摘要】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示問(wèn)題提出t57301p2???????1.向量加法與減法有哪幾種幾何運(yùn)算法則?λa?(1)|λa|=|λ||a|;(2)λ0時(shí),λa與a方向相同;λ0時(shí),λa與a方向相反;λ=0時(shí)
2024-11-17 06:28
【摘要】......平面向量基本定理及坐標(biāo)表示1.平面向量基本定理如果e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量a,存在唯一一對(duì)實(shí)數(shù)λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內(nèi)所有
2025-07-06 20:18
【摘要】學(xué)大教育個(gè)性化教學(xué)教案BeijingXueDaCenturyEducationTechnologyLtd.個(gè)性化教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級(jí)高一性別女授課時(shí)間段總課時(shí)第課
2025-08-10 16:20
【摘要】Oxya引入:,點(diǎn)A可以用什么來(lái)表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 04:47
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修42.3.3《平面向量的坐標(biāo)運(yùn)算》教學(xué)目的?(1)理解平面向量的坐標(biāo)的概念;?(2)掌握平面向量的坐標(biāo)運(yùn)算;?(3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線.?教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算?教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.
2024-11-19 06:00
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量-復(fù)習(xí)》制作:曾毅審校:王偉知識(shí)結(jié)構(gòu)要點(diǎn)復(fù)習(xí)例題解析鞏固練習(xí)平面向量復(fù)習(xí)平面向量復(fù)習(xí)知識(shí)結(jié)構(gòu)知識(shí)要點(diǎn)例題解析鞏固練習(xí)課外作業(yè)平
【摘要】平面向量名師答疑平面向量的基本定理向量平面向量的坐標(biāo)表示平移向量的數(shù)量積兩個(gè)非零向量垂直的充要條件余弦定理正線定理斜三角形的解法及其應(yīng)用線段定比分點(diǎn)坐標(biāo)公式兩個(gè)向量共線的充要條件向量的線性運(yùn)算知識(shí)結(jié)構(gòu)(一)知識(shí)點(diǎn)歸納
【摘要】平行向量坐標(biāo)表示例題A(1,-2),B(2,1),C(3,2)和D(-2,3)以CDBDADACAB??為一組基底來(lái)表示,課堂練習(xí):_______,,)4,7(),1,2(),2,3(???????ccbacba則表示用若向量ba2?向量平行的坐標(biāo)表示例題.,//),,6(),2,4(
2024-11-17 09:21
【摘要】第二章平面向量向量的物理背景與概念向量的幾何表示問(wèn)題提出t57301p2???????,位移與距離是同一個(gè)概念嗎?為什么?,如年齡、身高、體重、力、速度、面積、體積、溫度等,在數(shù)學(xué)上,為了正確理解、區(qū)分這些量,我們引進(jìn)向量的概念.探究(一):向量的物理背景與概念思考1:在物理中,怎
2024-11-18 00:48
【摘要】第4節(jié)平面向量的應(yīng)用(對(duì)應(yīng)學(xué)生用書第66頁(yè))1.向量在平面幾何中的應(yīng)用平面向量在平面幾何中的應(yīng)用主要是用向量的線性運(yùn)算和數(shù)量積解決平行、垂直、長(zhǎng)度、夾角等問(wèn)題.設(shè)a=(x1,y1),b=(x2,y2),①證明線線平行或點(diǎn)共線問(wèn)題,主要利用共線向量定理,即a∥b?a=λb(b≠0)?x1y2-x