【摘要】三角函數(shù)恒等變換一、三角函數(shù)的誘導公式1、下列各角的終邊與角α的終邊的關系角2kπ+α(k∈Z)π+α-α圖示與α角終邊的關系相同關于原點對稱關于x軸對稱角π-α-α+α圖示與α角終邊的關系關于y軸對稱關于直線y=x對稱2、六組誘
2025-05-22 07:40
【摘要】函數(shù)、三角函數(shù)、三角恒等變換重要公式1.=;=;2、當為奇數(shù)時,;當為偶數(shù)時,.3、⑴;?、疲?、運算性質(zhì):⑴;⑵;⑶.5、指數(shù)函數(shù)解析式:6、指數(shù)函數(shù)性質(zhì):圖象性質(zhì)(1)定義域:R(2)值域:(0,+∞)(3)過定點(0,1),即x=0時,y=1(4)在R上是增函數(shù)(4)在R上是
2025-07-31 05:18
【摘要】二倍角公式:,tan1tan22tan2?????sin2α=2sinαcosα,(S2α).cos2α=cos2α-sin2α,(C2α).(T2α).因為sin2α+cos2α=1,所以公式(C2α)可以變形為cos2α=2cos2α-1,或cos2α=1-
2025-08-01 12:08
【摘要】三角函數(shù)三角恒等變換專題復習專題突破高中數(shù)學組:趙雪剛知識層面:熟練掌握兩角和與差的正弦、余弦、正切公式、二倍角公式及其變形使用;思想層面:緊抓三角函數(shù)的三個不同:“名稱不同”、“角度不同”、“次方不同”采用:
2024-10-07 17:21
【摘要】設計:高一年級數(shù)學備課組授課教師:李洪偉1、降冪擴角公式3、輔助角公式22cos1cos)3(22cos1sin)2(2sin21cossin)1(22????????????2、升冪縮角公式1cos2sin21sincos2cos
2025-08-01 08:55
【摘要】三角函數(shù)計算與三角恒等變換審稿鎮(zhèn)江市教研室黃厚忠莊志紅江蘇省鎮(zhèn)江第一中學唐毅本節(jié)講座知識目錄1234本節(jié)講座知識目錄三角函數(shù)計算、三角恒等變換的高考要求三角函數(shù)計算、三角恒等變換的基本策略三角函數(shù)各公式間的推導和常見題型65三角函數(shù)計算、三角恒等變換典型例題分析三角函
2025-07-23 23:41
【摘要】三角函數(shù)與三角恒等變換(A)一、填空題(本大題共14小題,每題5分,,請把答案寫在指定位置上)1.半徑是r,圓心角是α(弧度)的扇形的面積為________.2.若,則tan(π+α)=________.3.若α是第四象限的角,則π-α是第________象限的角.4.適合的實數(shù)m的取值范圍是_________.5.若tanα=3,則cos2α+3sin2α=
2025-07-29 20:29
【摘要】1.兩角和與差的三角函數(shù);;。2.二倍角公式;;。3.三角函數(shù)式的化簡常用方法:①直接應用公式進行降次、消項;②切割化弦,異名化同名,異角化同角;③三角公式的逆用等。(2)化簡要求:①能求出值的應求出值;②使三角函數(shù)種數(shù)盡量少;③使項數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開方數(shù)不含三角函數(shù)。(1)降冪公式;;。(2)輔助角公式,。
2025-03-30 05:42
【摘要】幾個三角恒等式三維目標知識與技能掌握和差化積、積化和差公式的推導方法.過程與方法通過和差化積和積化和差公和公式的推導,提高學生三角變換的能力.情感、態(tài)度、價值觀讓學生經(jīng)歷數(shù)學探索和發(fā)現(xiàn)的欲望和信心,體驗成功的感覺.重點難點重點:積化和差、和差化積公式的推導方法.難點:三角恒等式的證
2024-12-02 20:55
【摘要】 優(yōu)勝教育內(nèi)部資料張敬敬必修4三角函數(shù)三角恒等變換綜合練習一、選擇題(本大題共10小題,每小題3分,共30分,在每小題給出的四個選項中,只有一項是最符合題目要求的.)1.為終邊上一點,則()A、 B、C、 D、2.下列函數(shù)中,以為周期且在區(qū)間上為增函數(shù)的函數(shù)是(
2025-03-31 02:03
【摘要】年級高一學科數(shù)學內(nèi)容標題簡單的三角函數(shù)恒等變換編稿老師褚哲一、學習目標:1.了解積化和差、和差化積的推導過程,能初步運用公式進行和、積互化.2.能應用公式進行三角函數(shù)的求值、化簡、證明.二、重點、難點:重點:三角函數(shù)的積化和差與和差化積公式,能正確運用此公式進行簡單的三角函數(shù)式的化簡、求值和恒等式的證明.難點:公式的靈活應
2025-07-02 09:28
【摘要】三角函數(shù)的恒等變形與求值寶應中學高三數(shù)學文科備課組一、要點掃描?1、了解用向量的數(shù)量積推導出兩角差的余弦公式的過程。?2、能利用已知條件,正確合理地運用三角恒等變形公式進行三角函數(shù)式的化簡、求值及恒等式證明。二、課前熱身?1.若,則
2024-11-20 01:26
【摘要】三角函數(shù)的基本關系式倒數(shù)關系:商的關系:平方關系:tanα·cotα=1sinα·cscα=1cosα·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α?誘導
2025-06-28 12:13
【摘要】第二章三角、反三角函數(shù)一、考綱要求、弧度的意義,能正確進行弧度和角度的互換。、余弦、正切的定義,了解余切、正割、余割的定義,掌握同角三角函數(shù)的基本關系式,掌握正弦、余弦的誘導公式,理解周期函數(shù)與最小正周期的意義。、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。,進行簡單三角函數(shù)式的化簡,求值和恒等式的證明。、余弦函數(shù),正切函數(shù)的圖像和性質(zhì),會用“五點法”畫正弦
2024-08-17 23:44
【摘要】第8課時:§幾個三角恒等式【三維目標】:一、知識與技能1.能運用兩角和的正弦、余弦、正切公式、二倍角的正弦、余弦、正切公式進行簡單的恒等變換(包括引導導出積化和差、和差化積、半角公式,但不要求記憶).揭示知識背景,培養(yǎng)學生的應用意識與建模意識.“和差化積”及“積化和差”公式,并對此有所了解.、求值、探索和證明一些恒等關系,進一步體會這些三角恒等變形
2025-06-13 23:55