【摘要】數(shù)列裂項(xiàng)相消求和的典型題型1.已知等差數(shù)列的前n項(xiàng)和為則數(shù)列的前100項(xiàng)和為( )A.B.C.D.2.?dāng)?shù)列其前項(xiàng)之和為則在平面直角坐標(biāo)系中,直線在y軸上的截距為( )A.-10B.-9C.10D.93.等比數(shù)列的各項(xiàng)均為正數(shù),且.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)求數(shù)列的前項(xiàng)和.4.正項(xiàng)數(shù)列滿足.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)
2025-03-31 02:52
【摘要】裂項(xiàng)相消17.(2013課標(biāo)全國Ⅰ,文17)(本小題滿分12分)已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足(1)求{an}的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.(17)(本小題滿分12分)Sn為數(shù)列{an}0,(Ⅰ)求{an}的通項(xiàng)公式:(Ⅱ)設(shè),求數(shù)列}的前n項(xiàng)和18.(本小題滿分
【摘要】數(shù)列綜合練習(xí)(一)1.等比數(shù)列前n項(xiàng)和公式:(1)公式:Sn=.(2)注意:應(yīng)用該公式時(shí),一定不要忽略q=1的情況.2.若{an}是等比數(shù)列,且公比q≠1,則前n項(xiàng)和Sn=(1-qn)=A(qn-1).其中:A=.3.推導(dǎo)等比數(shù)列前n項(xiàng)和的方法叫錯(cuò)位相減法.一般適用于求一個(gè)等差數(shù)列與一個(gè)等比數(shù)列對應(yīng)項(xiàng)積的前n項(xiàng)和.4.拆項(xiàng)成差求和經(jīng)常用到下列拆項(xiàng)公式:(1)=-;
2025-04-23 01:43
【摘要】裂項(xiàng)相消法求和把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差、正負(fù)相消剩下首尾若干項(xiàng)。1、特別是對于,其中是各項(xiàng)均不為0的等差數(shù)列,通常用裂項(xiàng)相消法,即利用=,其中2、常見拆項(xiàng):例1求數(shù)列的前和.例2求數(shù)列的前和.例3求數(shù)列的前和.
2025-04-23 12:37
【摘要】奧數(shù)常見裂項(xiàng)法、經(jīng)典裂項(xiàng)試題和裂項(xiàng)公式1、2、3、對于分母可以寫作兩個(gè)因數(shù)乘積的分?jǐn)?shù),即形式的,這里我們把較小的數(shù)寫在前面,即a<b,那么有:=-′-4、對于分母上為3個(gè)或4個(gè)連續(xù)自然數(shù)乘積形式的分?jǐn)?shù),即有:5、+=+′′′
2025-03-31 00:27
【摘要】整數(shù)裂項(xiàng) 整數(shù)裂項(xiàng)基本公式 (1) (2) 【例1】=_________ 【考點(diǎn)】整數(shù)裂項(xiàng)【難度】3星【題型】計(jì)算 【解析】這是整數(shù)的裂項(xiàng)。裂項(xiàng)思想是:瞻前顧后,相互抵消。...
2024-11-17 00:08
【摘要】累加數(shù)列錯(cuò)位相減取大差法在非節(jié)奏流水施工中,通常采用累加數(shù)列錯(cuò)位相減取大差法計(jì)算流水步距。由于這種方法是由潘特考夫斯基首先提出的,故又稱為潘特考夫斯基法。基本步驟:1.對每一個(gè)施工過程在各施工段上的流水節(jié)拍依次累加,求得各施工過程流水節(jié)拍的累加數(shù)列;2.將相鄰施工過程流水節(jié)拍累加數(shù)列中的后者錯(cuò)后一位,相減后求得一個(gè)差數(shù)列;3.在差數(shù)列中取最大值,即為這兩個(gè)相鄰施工過程的
2025-04-23 08:39
【摘要】分?jǐn)?shù)裂項(xiàng)求和方法總結(jié)(一)用裂項(xiàng)法求型分?jǐn)?shù)求和分析:因?yàn)椋剑╪為自然數(shù))所以有裂項(xiàng)公式:(二)用裂項(xiàng)法求型分?jǐn)?shù)求和分析:型。(n,k均為自然數(shù))因?yàn)樗裕ㄈ┯昧秧?xiàng)法求型分?jǐn)?shù)求和分析:型(n,k均為自然數(shù))==所以=(四)用裂項(xiàng)法求型分?jǐn)?shù)求和分析:(n,k均為自然數(shù))
2025-08-11 03:23
【摘要】計(jì)算(裂項(xiàng)、換元與通項(xiàng)歸納)第一部分裂項(xiàng)【1】計(jì)算1+2+3+4+……+20=(1+2+3+……+20)+(++++……+)=210+(++++……+)=210+(1-+-+-+--)=210+(1-)=210【2】++
2025-05-22 07:29
【摘要】分?jǐn)?shù)裂項(xiàng)計(jì)算教學(xué)目標(biāo)本講知識點(diǎn)屬于計(jì)算大板塊內(nèi)容,其實(shí)分?jǐn)?shù)裂項(xiàng)很大程度上是發(fā)現(xiàn)規(guī)律、利用公式的過程,可以分為觀察、改造、運(yùn)用公式等過程。很多時(shí)候裂項(xiàng)的方式不易找到,需要進(jìn)行適當(dāng)?shù)淖冃?,或者先進(jìn)行一部分運(yùn)算,使其變得更加簡單明了。本講是整個(gè)奧數(shù)知識體系中的一個(gè)精華部分,列項(xiàng)與通項(xiàng)歸納是密不可分的,所以先找通項(xiàng)是裂項(xiàng)的前提,是能力的體現(xiàn),對學(xué)生要求較高。知識點(diǎn)
2025-06-22 04:05
【摘要】專題:數(shù)列的通項(xiàng)求通項(xiàng)的常見問題:1、特殊數(shù)列的通項(xiàng)2、構(gòu)造特殊數(shù)列,間接求通項(xiàng)3、由Sn求an4、由遞推關(guān)系求an已知數(shù)列{an}中,a1=2。(1)求證:數(shù)列是等差數(shù)列。(2)求數(shù)列{an}的通項(xiàng)公式?!夯仡櫋?/span>
2024-11-17 13:17
【摘要】完美WORD格式資料分?jǐn)?shù)乘法與分?jǐn)?shù)裂項(xiàng)法【專題解析】我們知道,分?jǐn)?shù)乘法的運(yùn)算是這樣的:分?jǐn)?shù)乘分?jǐn)?shù),應(yīng)該分子乘分子,分母乘分母(當(dāng)然能約分的最好先約分在計(jì)算)。分?jǐn)?shù)乘法中有許多十分有趣的現(xiàn)象與技巧,它主要通過些運(yùn)算定律、性質(zhì)和一些技巧性的方法,達(dá)
2025-07-03 13:21
【摘要】通項(xiàng)公式和前n項(xiàng)和1、新課講授:求數(shù)列前N項(xiàng)和的方法1.公式法(1)等差數(shù)列前n項(xiàng)和:特別的,當(dāng)前n項(xiàng)的個(gè)數(shù)為奇數(shù)時(shí),,即前n項(xiàng)和為中間項(xiàng)乘以項(xiàng)數(shù)。這個(gè)公式在很多時(shí)候可以簡化運(yùn)算。(2)等比數(shù)列前n項(xiàng)和:q=1時(shí),,特別要注意對公比的討論。(3)其他公式較常見公式:1、2、3、[例1
2025-03-31 02:53
【摘要】精品字里行間精品文檔學(xué)而思課程配套練習(xí)題集分?jǐn)?shù)裂項(xiàng)綜合練習(xí)題1、夯實(shí)基礎(chǔ):1、比較:與;與;與的大小關(guān)系,通過觀察你發(fā)現(xiàn)了什么規(guī)律?2、計(jì)算:3、計(jì)算:4、求的值。5、計(jì)算:學(xué)而思課程配套練習(xí)題集2、拓展提高:6、計(jì)算:7、
2025-03-30 12:25
【摘要】放縮法的常見技巧(1)舍掉(或加進(jìn))一些項(xiàng)(2)在分式中放大或縮小分子或分母。(3)應(yīng)用基本不等式放縮(例如均值不等式)。(4)應(yīng)用函數(shù)的單調(diào)性進(jìn)行放縮(5)根據(jù)題目條件進(jìn)行放縮。(6)構(gòu)造等比數(shù)列進(jìn)行放縮。(7)構(gòu)造裂項(xiàng)條件進(jìn)行放縮。(8)利用函數(shù)切線、割線逼近進(jìn)行放縮。使用放縮法的注意事項(xiàng)(1)放縮的方向要一致。(2)放與縮要適度。(3)很多時(shí)候只對數(shù)列
2025-07-02 16:31