【摘要】平面向量數(shù)量積的坐標(biāo)表示四川省沐川中學(xué)劉少民平面向量數(shù)量積復(fù)習(xí)a和b,它們的夾角為θ,則a&
2024-11-17 05:07
【摘要】2020年12月18日星期五學(xué)習(xí)目標(biāo)?⒈掌握空間向量夾角和模的概念及表示方法;?⒉掌握兩個(gè)向量數(shù)量積的概念、性質(zhì)和計(jì)算方法及運(yùn)算律;?⒊掌握兩個(gè)向量數(shù)量積的主要用途,會(huì)用它解決立體幾何中的一些簡單問題.?重點(diǎn):兩個(gè)向量的數(shù)量積的計(jì)算方法及其應(yīng)用.?難點(diǎn):兩個(gè)向量數(shù)量積的幾何意義.共面向量定理:如果兩個(gè)向量
2024-11-19 21:09
【摘要】向量數(shù)量積的物理背景與定義復(fù)習(xí)回顧x1+x2y1+y2x1-x2y1-y2λx1λy11、若向量a=(x1,y1),b=(x2,y2)則向量a+b=(,)
2024-11-20 01:35
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-18 08:35
【摘要】第五章向量平面向量的數(shù)量積及運(yùn)算律(2)平面向量的數(shù)量積及運(yùn)算律(2)一.復(fù)習(xí):1、平面向量的數(shù)量積的定義記作=已知兩個(gè)非零向量和,它們的夾角為?,我們把數(shù)量abba?即有
2024-08-14 17:41
【摘要】Fs?┓Fs?┓W=|F||s|cos?OABFS?功:為起點(diǎn),如果以,和對于兩個(gè)非零向量Oba??a??OA作??bOB的夾角與叫做向量那么AOB???ba?oAB?b?a夾角的范圍:001800???顯然
2024-08-05 05:52
【摘要】§向量的數(shù)量積一.問題情境:情境1:前面我們學(xué)習(xí)了平面向量的加法、減法和數(shù)乘三種運(yùn)算,那么向量與向量能否“相乘”呢??cos||||sFW???其中力和位移是向量,是與的夾角,而功W是數(shù)量.?F?s?s?F?情境2:一個(gè)物體在力F的作用下發(fā)生了
2024-11-26 07:35
【摘要】空間向量的數(shù)量積運(yùn)算一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作:對空間任意兩個(gè)向量的充要條件是存在實(shí)數(shù)λ使推論:如果為經(jīng)過已知點(diǎn)A且平行已知
2024-11-18 00:24
【摘要】向量的加法以前由于上海和臺(tái)北沒有直航,某人春節(jié)從臺(tái)北回上海探親,乘飛機(jī)要先從臺(tái)北到香港,再從香港到上海,這兩次位移和是什么?現(xiàn)在從上海到臺(tái)北有直航了嗎?直航的位移與前兩次的位移和一樣嗎?上海臺(tái)北香港上海臺(tái)北香港CAB1.向量加法的定義:(1)
2024-11-19 06:00
【摘要】向量的減法1、向量加法的三角形法則baOaaaaaaaabbbbbbbBbaA注意:a+b各向量“首尾相連”,和向量由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn).溫故知新baAaaaaaaaabbb
2024-11-17 09:21
【摘要】德州市實(shí)驗(yàn)中學(xué)顧業(yè)振復(fù)習(xí)提問:1、什么叫向量?一般用什么表示?2、什么叫平行向量?3、什么叫相等向量?既有大小又有方向的量叫向量,一般用有向線段表示。方向相同或相反的非零向量叫平行向量。長度相等且方向相同的向量叫相等向量。引例(1).某人從A到B,再從B
【摘要】一、向量的數(shù)量積二、向量的向量積三、向量的混合積四、小結(jié)思考題第三節(jié)數(shù)量積向量積混合積(其中?為F?與s?的夾角)啟示向量a?與b?的數(shù)量積為ba????cos||||baba??????(其中?為a?與b?的夾角)一物體在常力
2024-08-28 16:41
【摘要】1思考1思考2引入思考3課外思考P競賽輔導(dǎo)─向量法2利用向量處理幾何問題,最重要的是要先在幾何圖形中尋找具有向量因素的特征,如共線、平行、垂直、線段的倍分等,然后引進(jìn)向量通過向量的運(yùn)算,來達(dá)到解(證)幾何題的目的.下面就這一方法在解題中的應(yīng)用做一些思考.競賽輔
【摘要】向量的加法與減法如圖,已知向量a、b.在平面內(nèi)任取一點(diǎn)A,作,,則向量叫做a與b的和,記作a+b,即1.向量的加法:求兩個(gè)向量和的運(yùn)算,叫做向量的加法。三角形法則“首尾相接,首尾連”aAB?bBC?ACACBCABba????aba
2024-11-18 08:36
【摘要】數(shù)量積運(yùn)算一、兩個(gè)向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個(gè)向量的數(shù)量積注:①兩個(gè)向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2025-01-28 01:08