【正文】
having positive charge on the valence band on being in the electron that price has at hand being aroused to conduction band, the result electron having produced high activity in the semiconductor outside hole suits [3]. TiO2 UV photocatalytic mechanismThink that TiO2 catalyzes mechanism under irradiating in ultraviolet brightness is electron (e) hole (h +) theory monly now. Think that valence band an electron be aroused to conduction band ecb but has hole h + vb left in the valence band when UV is irradiated by the ultraviolet ray. From the ecb but deoxidation organic that the ultraviolet optical excitation produces (if dyestuff Dye) or accept body reaction with the electron (if O2 in the water attaching oneself to TiO2 outside or dissolving uses it39。(Lambda is Cu target wavelength nm, the beta is that the peak is partly broad, the theta is that the angle of diffraction, dare grain diameter size). The BET technology, the TiO2 pore surface area and the hole volume available BET technology (Brunauer Emmett Teller) analyzes determines。s, get the information that various base group structure changes in heat treatment process preparation TiO2, can be preliminary analyzing the crystal texture judging that the TiO2 structure, the analysis coordinating the Xray (XRD) again can determine TiO2 right away. The technology analyses the Xray (XRD) , the TiO2 XRD and the standard fair amount of confidence pursue the (retile type rutileTiO2 characteristic peak has (110), (001) ,(100) mainly , stabilize among them most with (110) by parallel oute。 By having changed condition , preparation board titanium ore type TiO2 nanometer material。 Weak basicity condition is beneficial to forming board titanium ore type TiO2. Secondly, different acid is able to lead to the crystal type generating diversity, both PO43, SO42and Fcan form the thing fitting with titanium ion, aquation or the hydroxylation titanium ion matches the body in substituting an aqueous solution, the place ion forming lower being qualified for of symmetrical characteristic, TiO2 beneficial to generating the sharp titanium ore type. Zhang Yi Bing while [45] the mechanism taking three chlorinating titanium and urea as main raw material , taking form having adopt hot legal institutions of water to get the retile type TiO2 micron ball and film that the TiO2 nanometer stick is posed of and having brought forward oute39。 research progressPhotocatalysis material is that even, visible light irradiates go down untying chemistry matter of all kinds or kill once resemble having photocatalysis activity , being able to in the purple outside up bacterium39。 characterization。再次衷心的感謝所有幫助過我的同學(xué)和老師,使我能夠集中精力順利完成論文,謝謝大家!參考文獻(xiàn)[1]高濂, 鄭珊, 張青紅. 納米氧化鈦光催化材料及應(yīng)用[M]. 北京: 化學(xué)工業(yè)出版社, 2002: 39114[2]方世杰, 徐明霞. 納米TiO2光催化劑的制備方法[J]. 硅酸鹽通報(bào), 2002(2), 38 [3]張梅, 陸路德. 納米TiO2—一種性能優(yōu)良的光催化劑[J]. 化工新型材料, 2000, 28 (4), 1113[4]肖文勝, 李文洪. 溶膠凝膠法合成TiO2納米粉體及光催化活性研究[J]. 河南科學(xué), 2006, 10(5), 648651[5]趙文寬. 高熱穩(wěn)定性銳鈦礦型TiO2納米粉體的制備[J]. 無機(jī)材料學(xué)報(bào), 1998, 13(40), 608612[6]蔣玉龍, 王智宇, 唐培松等. 量子尺寸納米TiO2的水熱制備及光催化性能 [J]. 浙江大學(xué)學(xué)報(bào), 2005, 3(39), 440444[7]倪星元, 沈軍等. 納米材料的理化特性與應(yīng)用[M]. 北京: 化學(xué)工業(yè)出社, 2006: 9[8]張昭, 彭少方, 劉棟昌. 無機(jī)精細(xì)化工工藝學(xué)[M]. 第二版. 北京: 化學(xué)工業(yè)出版社, 2005: 116117[9]張立德, 牟季美. 納米材料與納米結(jié)構(gòu)[M]. 北京科學(xué)出版社, 2001: 135138 [10]倪星元, 沈軍等. 納米材料的理化特性與應(yīng)用[M]. 北京: 化學(xué)工業(yè)出版社, 2006: 116120[11]陳琦麗, 唐超群, 肖循等. 二氧化鈦納米晶的制備及光催化活性研究[J]. 材料科學(xué)與工程學(xué)報(bào), 2003, 21(4), 518520[12]曲長(zhǎng)紅. 不同結(jié)構(gòu)納米二氧化鈦的制備及其物性研究: [碩士研究生論文].吉林: 吉林大學(xué), 2006[13]李志軍, 王紅英. 納米二氧化鈦的制備方法[J]. 山西化工, 2006, 26(2), 4749[14]施爾畏. 水熱法的應(yīng)用與發(fā)展[J]. 無機(jī)材料學(xué)報(bào), 1996, 11(2), 193198[15]陳德明, 王亭杰, 雨山江等. 納米TiO2的性能、應(yīng)用及制備方法[J]. 材料工程, 2002(11), 4247[16]李慧泉, 李越湘, 周新木等. Sm2O3摻雜TiO2光催化劑的制備和性能[J]. 催化學(xué)報(bào), 2004, 25(10), 814818[17]杜作娟, 古映瑩. 水熱法合成銳鈦礦型納米二氧化鈦[J]. 精細(xì)化工中體, 2002, 32(5), 2425[18]苗鴻雁, 李永強(qiáng), 羅宏杰等. 摻鐵二氧化鈦納米粉體的水熱法之北與表征[J]. 中國(guó)陶瓷工業(yè), 2003, 10(5), 15[19]Iwasaki M, Hara M, Kawada H, et al. Cobalt IonDoped TiO2 photocatalyst response to visible light [J]. J Colloid Interface Sci, 2000, 224(1): 202204[20]Ohtani B, Iwai K, Nishimoto S, et al. Role of platinum deposits titanium (IV)oxideparticle: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. Phys. Chem. B. 1997, 101, 3349–3359 [21]高遠(yuǎn), 徐安武. 固體超強(qiáng)酸催化劑SO42TiO2的制備及其光催化氧化性能[J]. 廣東有色金屬學(xué)報(bào), 2002, 12(2), 9094[22]段學(xué)臣, 高桂蘭, 吳湘?zhèn)サ? 納米二氧化鈦粉末的研制[J]. 稀有金屬與硬質(zhì)合金, 2002, 30(4), 1720外文資料翻譯TiO2 Nanomaterials Prepared By Hydrothermal Method, Characterization And Photocatalytic ResearchABSTRACT: The recent research progress of photocatalyzed degradation of pollutants using TiO2 nanomaterials is reviewed. The hydrothermal preparation and characterization of TiO2 nanomaterials are discussed. The photocatalyzed mechanism of TiO2 nanomaterials under UV and visible light and their usages are described in this paper.KEY WORDS: TiO2 nanometer material。感謝家人三年來的付出,使我不僅順利完成了大學(xué)教育學(xué)到了先進(jìn)的文化知識(shí),尤其化學(xué)方面的知識(shí),提高了人際交往能力,綜合素質(zhì)和水平上了一個(gè)新臺(tái)階,為以后走上工作崗位打下了堅(jiān)實(shí)的理論基礎(chǔ),還懂得了家庭的重要性,要學(xué)會(huì)奉獻(xiàn)和付出,報(bào)答父母是我前進(jìn)的動(dòng)力。謝 辭在即將結(jié)束畢業(yè)設(shè)計(jì)之際,感謝***老師在實(shí)驗(yàn)方面給予的指導(dǎo)和幫助,實(shí)驗(yàn)過程中的各個(gè)環(huán)節(jié)到最后的論文撰寫,都是在陳老師的悉心指導(dǎo)和關(guān)懷下完成的。本論文的創(chuàng)新之處在于:首次合成了Bi2O3/TiO2復(fù)合光催化劑,并對(duì)其進(jìn)行了光催化降解試驗(yàn),取得了較好的降解效果。(2)%時(shí)樣品的光催化性能較好,%時(shí),光催化活性下降。結(jié) 論 以光催化活性為評(píng)價(jià)標(biāo)準(zhǔn),采用水熱法制備Bi2O3/TiO2復(fù)合光催化劑,解決了二者水解速度不同所造成局部組成不一致的缺點(diǎn),考察了水和乙醇配比、Bi2O3摻雜量對(duì)復(fù)合光催化劑Bi2O3/TiO2光催化活性的影響,用X射線衍射等手段對(duì)所制備樣品進(jìn)行了表征。另外,脫色反應(yīng)大多符合假一級(jí)動(dòng)力學(xué)方程,反應(yīng)的動(dòng)力學(xué)方程和半衰期如表31所示。將初始濃度為100mg/,固定Bi2O3/,用125W紫外燈照射,間隔15min取樣分析,結(jié)果如圖32所示。在起始濃度為100mg/L的羅丹明B染料溶液中按照0g/L、用125W紫外燈照射,定時(shí)取樣分析,結(jié)果如圖31所示。根據(jù)吸光度計(jì)算羅丹明B脫色率[21,22]。第3章 二氧化鈦對(duì)羅丹明B的光催化脫色實(shí)驗(yàn)光催化脫色試驗(yàn)是在斯東柯SGY1型多功能光反應(yīng)儀中進(jìn)行。采用Scherrer方程計(jì)算催化劑顆粒尺寸,摻雜鉍氧化物后TiO2顆粒直徑明顯變小,這說明正是鉍氧化物在TiO2表面形成的高分散層阻礙了高溫下TiO2納米顆粒的生長(zhǎng)。%時(shí),光催化活性反而下降,這是因?yàn)殂G半徑較大而可能以氧化物形式富集在TiO2表面,但是當(dāng)摻雜量超過一定值時(shí),過多的鉍氧化物沉積在TiO2表面,阻礙了電子和空穴向催化劑表面的傳遞,TiO2表面鉍氧化物成為電荷載流子的復(fù)合中心,導(dǎo)致催化劑活性降低[18,19,20]。所以Bi2O3與TiO2復(fù)合,拓寬了TiO2對(duì)光的吸收范圍,提高了光催化活性。表22 不同摻雜量的顆粒尺寸和光催化活性摻雜量TiO2%Bi2O3 / TiO2%Bi2O3 / TiO2%Bi2O3 / TiO2粒徑/nm k/min1R